blob: 2bc957ebcf22f84c712cd9e443a913d6f6c5881a [file] [log] [blame]
// Copyright (C) 2011 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.package com.google.gerrit.server.git;
package com.google.gerrit.server.project;
import static com.google.gerrit.server.project.RefControl.isRE;
import static com.google.gerrit.server.project.RefControl.shortestExample;
import static com.google.gerrit.server.project.RefControl.toRegExp;
import com.google.gerrit.common.data.AccessSection;
import com.google.gerrit.server.cache.Cache;
import com.google.gerrit.server.cache.CacheModule;
import com.google.inject.Inject;
import com.google.inject.Module;
import com.google.inject.Singleton;
import com.google.inject.TypeLiteral;
import com.google.inject.name.Named;
import org.apache.commons.lang.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.IdentityHashMap;
import java.util.List;
/** Caches the order AccessSections should be sorted for evaluation. */
@Singleton
public class SectionSortCache {
private static final Logger log =
LoggerFactory.getLogger(SectionSortCache.class);
private static final String CACHE_NAME = "permission_sort";
public static Module module() {
return new CacheModule() {
@Override
protected void configure() {
final TypeLiteral<Cache<EntryKey, EntryVal>> type =
new TypeLiteral<Cache<EntryKey, EntryVal>>() {};
core(type, CACHE_NAME);
bind(SectionSortCache.class);
}
};
}
private final Cache<EntryKey, EntryVal> cache;
@Inject
SectionSortCache(@Named(CACHE_NAME) Cache<EntryKey, EntryVal> cache) {
this.cache = cache;
}
void sort(String ref, List<AccessSection> sections) {
final int cnt = sections.size();
if (cnt <= 1) {
return;
}
EntryKey key = new EntryKey(ref, sections);
EntryVal val = cache.get(key);
if (val != null) {
int[] srcIdx = val.order;
if (srcIdx != null) {
AccessSection[] srcList = copy(sections);
for (int i = 0; i < cnt; i++) {
sections.set(i, srcList[srcIdx[i]]);
}
} else {
// Identity transform. No sorting is required.
}
} else {
boolean poison = false;
IdentityHashMap<AccessSection, Integer> srcMap =
new IdentityHashMap<AccessSection, Integer>();
for (int i = 0; i < cnt; i++) {
poison |= srcMap.put(sections.get(i), i) != null;
}
Collections.sort(sections, new MostSpecificComparator(ref));
int srcIdx[];
if (isIdentityTransform(sections, srcMap)) {
srcIdx = null;
} else {
srcIdx = new int[cnt];
for (int i = 0; i < cnt; i++) {
srcIdx[i] = srcMap.get(sections.get(i));
}
}
if (poison) {
log.error("Received duplicate AccessSection instances, not caching sort");
} else {
cache.put(key, new EntryVal(srcIdx));
}
}
}
private static AccessSection[] copy(List<AccessSection> sections) {
return sections.toArray(new AccessSection[sections.size()]);
}
private static boolean isIdentityTransform(List<AccessSection> sections,
IdentityHashMap<AccessSection, Integer> srcMap) {
for (int i = 0; i < sections.size(); i++) {
if (i != srcMap.get(sections.get(i))) {
return false;
}
}
return true;
}
static final class EntryKey {
private final String ref;
private final String[] patterns;
private final int hashCode;
EntryKey(String refName, List<AccessSection> sections) {
int hc = refName.hashCode();
ref = refName;
patterns = new String[sections.size()];
for (int i = 0; i < patterns.length; i++) {
String n = sections.get(i).getName();
patterns[i] = n;
hc = hc * 31 + n.hashCode();
}
hashCode = hc;
}
@Override
public int hashCode() {
return hashCode;
}
@Override
public boolean equals(Object other) {
if (other instanceof EntryKey) {
EntryKey b = (EntryKey) other;
return ref.equals(b.ref) && Arrays.equals(patterns, b.patterns);
}
return false;
}
}
static final class EntryVal {
/**
* Maps the input index to the output index.
* <p>
* For {@code x == order[y]} the expression means move the item at
* source position {@code x} to the output position {@code y}.
*/
final int[] order;
EntryVal(int[] order) {
this.order = order;
}
}
/**
* Order the Ref Pattern by the most specific. This sort is done by:
* <ul>
* <li>1 - The minor value of Levenshtein string distance between the branch
* name and the regex string shortest example. A shorter distance is a more
* specific match.
* <li>2 - Finites first, infinities after.
* <li>3 - Number of transitions.
* <li>4 - Length of the expression text.
* </ul>
*
* Levenshtein distance is a measure of the similarity between two strings.
* The distance is the number of deletions, insertions, or substitutions
* required to transform one string into another.
*
* For example, if given refs/heads/m* and refs/heads/*, the distances are 5
* and 6. It means that refs/heads/m* is more specific because it's closer to
* refs/heads/master than refs/heads/*.
*
* Another example could be refs/heads/* and refs/heads/[a-zA-Z]*, the
* distances are both 6. Both are infinite, but refs/heads/[a-zA-Z]* has more
* transitions, which after all turns it more specific.
*/
private static final class MostSpecificComparator implements
Comparator<AccessSection> {
private final String refName;
MostSpecificComparator(String refName) {
this.refName = refName;
}
public int compare(AccessSection a, AccessSection b) {
return compare(a.getName(), b.getName());
}
private int compare(final String pattern1, final String pattern2) {
int cmp = distance(pattern1) - distance(pattern2);
if (cmp == 0) {
boolean p1_finite = finite(pattern1);
boolean p2_finite = finite(pattern2);
if (p1_finite && !p2_finite) {
cmp = -1;
} else if (!p1_finite && p2_finite) {
cmp = 1;
} else /* if (f1 == f2) */{
cmp = 0;
}
}
if (cmp == 0) {
cmp = transitions(pattern1) - transitions(pattern2);
}
if (cmp == 0) {
cmp = pattern2.length() - pattern1.length();
}
return cmp;
}
private int distance(String pattern) {
String example;
if (isRE(pattern)) {
example = shortestExample(pattern);
} else if (pattern.endsWith("/*")) {
example = pattern.substring(0, pattern.length() - 1) + '1';
} else if (pattern.equals(refName)) {
return 0;
} else {
return Math.max(pattern.length(), refName.length());
}
return StringUtils.getLevenshteinDistance(example, refName);
}
private boolean finite(String pattern) {
if (isRE(pattern)) {
return toRegExp(pattern).toAutomaton().isFinite();
} else if (pattern.endsWith("/*")) {
return false;
} else {
return true;
}
}
private int transitions(String pattern) {
if (isRE(pattern)) {
return toRegExp(pattern).toAutomaton().getNumberOfTransitions();
} else if (pattern.endsWith("/*")) {
return pattern.length();
} else {
return pattern.length();
}
}
}
}