blob: ef5e67f952ff3f43dabdff9d08d7e0fd53d7b96b [file] [log] [blame]
// Copyright (C) 2011 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.gerrit.server.util;
import com.google.gerrit.entities.AccessSection;
import com.google.gerrit.server.project.RefPattern;
import java.util.Comparator;
import org.apache.commons.text.similarity.LevenshteinDistance;
/**
* Order the Ref Pattern by the most specific. This sort is done by:
*
* <ul>
* <li>1 - The minor value of Levenshtein string distance between the branch name and the regex
* string shortest example. A shorter distance is a more specific match.
* <li>2 - Finites first, infinities after.
* <li>3 - Number of transitions. More transitions is more specific.
* <li>4 - Length of the expression text.
* </ul>
*
* Levenshtein distance is a measure of the similarity between two strings. The distance is the
* number of deletions, insertions, or substitutions required to transform one string into another.
*
* <p>For example, if given refs/heads/m* and refs/heads/*, the distances are 5 and 6. It means that
* refs/heads/m* is more specific because it's closer to refs/heads/master than refs/heads/*.
*
* <p>Another example could be refs/heads/* and refs/heads/[a-zA-Z]*, the distances are both 6. Both
* are infinite, but refs/heads/[a-zA-Z]* has more transitions, which after all turns it more
* specific.
*/
public final class MostSpecificComparator implements Comparator<AccessSection> {
private final String refName;
public MostSpecificComparator(String refName) {
this.refName = refName;
}
@Override
public int compare(AccessSection a, AccessSection b) {
return compare(a.getName(), b.getName());
}
public int compare(String pattern1, String pattern2) {
int cmp = distance(pattern1) - distance(pattern2);
if (cmp == 0) {
boolean p1_finite = finite(pattern1);
boolean p2_finite = finite(pattern2);
if (p1_finite && !p2_finite) {
cmp = -1;
} else if (!p1_finite && p2_finite) {
cmp = 1;
} else /* if (f1 == f2) */ {
cmp = 0;
}
}
if (cmp == 0) {
cmp = transitions(pattern2) - transitions(pattern1);
}
if (cmp == 0) {
cmp = pattern2.length() - pattern1.length();
}
return cmp;
}
private int distance(String pattern) {
String example;
if (RefPattern.isRE(pattern)) {
example = RefPattern.shortestExample(pattern);
} else if (pattern.endsWith("/*")) {
example = pattern;
} else if (pattern.equals(refName)) {
return 0;
} else {
return Math.max(pattern.length(), refName.length());
}
return LevenshteinDistance.getDefaultInstance().apply(example, refName);
}
private boolean finite(String pattern) {
if (RefPattern.isRE(pattern)) {
return RefPattern.toRegExp(pattern).toAutomaton().isFinite();
} else if (pattern.endsWith("/*")) {
return false;
} else {
return true;
}
}
private int transitions(String pattern) {
if (RefPattern.isRE(pattern)) {
return RefPattern.toRegExp(pattern).toAutomaton().getNumberOfTransitions();
} else if (pattern.endsWith("/*")) {
return pattern.length();
} else {
return pattern.length();
}
}
}