blob: 8ea450700cfe5321b82ed44a48a609c8a2d31c77 [file] [log] [blame]
import random, unittest, sys
from ctypes import ArgumentError
from django.contrib.gis.geos import *
from django.contrib.gis.geos.base import HAS_GDAL
from django.contrib.gis.tests.geometries import *
if HAS_NUMPY: from numpy import array
if HAS_GDAL: from django.contrib.gis.gdal import OGRGeometry, SpatialReference, CoordTransform, GEOJSON
class GEOSTest(unittest.TestCase):
@property
def null_srid(self):
"""
Returns the proper null SRID depending on the GEOS version.
See the comments in `test15_srid` for more details.
"""
info = geos_version_info()
if info['version'] == '3.0.0' and info['release_candidate']:
return -1
else:
return None
def test01a_wkt(self):
"Testing WKT output."
for g in wkt_out:
geom = fromstr(g.wkt)
self.assertEqual(g.ewkt, geom.wkt)
def test01b_hex(self):
"Testing HEX output."
for g in hex_wkt:
geom = fromstr(g.wkt)
self.assertEqual(g.hex, geom.hex)
def test01c_kml(self):
"Testing KML output."
for tg in wkt_out:
geom = fromstr(tg.wkt)
kml = getattr(tg, 'kml', False)
if kml: self.assertEqual(kml, geom.kml)
def test01d_errors(self):
"Testing the Error handlers."
# string-based
print "\nBEGIN - expecting GEOS_ERROR; safe to ignore.\n"
for err in errors:
try:
g = fromstr(err.wkt)
except (GEOSException, ValueError):
pass
print "\nEND - expecting GEOS_ERROR; safe to ignore.\n"
class NotAGeometry(object):
pass
# Some other object
self.assertRaises(TypeError, GEOSGeometry, NotAGeometry())
# None
self.assertRaises(TypeError, GEOSGeometry, None)
# Bad WKB
self.assertRaises(GEOSException, GEOSGeometry, buffer('0'))
def test01e_wkb(self):
"Testing WKB output."
from binascii import b2a_hex
for g in hex_wkt:
geom = fromstr(g.wkt)
wkb = geom.wkb
self.assertEqual(b2a_hex(wkb).upper(), g.hex)
def test01f_create_hex(self):
"Testing creation from HEX."
for g in hex_wkt:
geom_h = GEOSGeometry(g.hex)
# we need to do this so decimal places get normalised
geom_t = fromstr(g.wkt)
self.assertEqual(geom_t.wkt, geom_h.wkt)
def test01g_create_wkb(self):
"Testing creation from WKB."
from binascii import a2b_hex
for g in hex_wkt:
wkb = buffer(a2b_hex(g.hex))
geom_h = GEOSGeometry(wkb)
# we need to do this so decimal places get normalised
geom_t = fromstr(g.wkt)
self.assertEqual(geom_t.wkt, geom_h.wkt)
def test01h_ewkt(self):
"Testing EWKT."
srid = 32140
for p in polygons:
ewkt = 'SRID=%d;%s' % (srid, p.wkt)
poly = fromstr(ewkt)
self.assertEqual(srid, poly.srid)
self.assertEqual(srid, poly.shell.srid)
self.assertEqual(srid, fromstr(poly.ewkt).srid) # Checking export
def test01i_json(self):
"Testing GeoJSON input/output (via GDAL)."
if not HAS_GDAL or not GEOJSON: return
for g in json_geoms:
geom = GEOSGeometry(g.wkt)
self.assertEqual(g.json, geom.json)
self.assertEqual(g.json, geom.geojson)
self.assertEqual(GEOSGeometry(g.wkt), GEOSGeometry(geom.json))
def test01j_eq(self):
"Testing equivalence."
p = fromstr('POINT(5 23)')
self.assertEqual(p, p.wkt)
self.assertNotEqual(p, 'foo')
ls = fromstr('LINESTRING(0 0, 1 1, 5 5)')
self.assertEqual(ls, ls.wkt)
self.assertNotEqual(p, 'bar')
# Error shouldn't be raise on equivalence testing with
# an invalid type.
for g in (p, ls):
self.assertNotEqual(g, None)
self.assertNotEqual(g, {'foo' : 'bar'})
self.assertNotEqual(g, False)
def test02a_points(self):
"Testing Point objects."
prev = fromstr('POINT(0 0)')
for p in points:
# Creating the point from the WKT
pnt = fromstr(p.wkt)
self.assertEqual(pnt.geom_type, 'Point')
self.assertEqual(pnt.geom_typeid, 0)
self.assertEqual(p.x, pnt.x)
self.assertEqual(p.y, pnt.y)
self.assertEqual(True, pnt == fromstr(p.wkt))
self.assertEqual(False, pnt == prev)
# Making sure that the point's X, Y components are what we expect
self.assertAlmostEqual(p.x, pnt.tuple[0], 9)
self.assertAlmostEqual(p.y, pnt.tuple[1], 9)
# Testing the third dimension, and getting the tuple arguments
if hasattr(p, 'z'):
self.assertEqual(True, pnt.hasz)
self.assertEqual(p.z, pnt.z)
self.assertEqual(p.z, pnt.tuple[2], 9)
tup_args = (p.x, p.y, p.z)
set_tup1 = (2.71, 3.14, 5.23)
set_tup2 = (5.23, 2.71, 3.14)
else:
self.assertEqual(False, pnt.hasz)
self.assertEqual(None, pnt.z)
tup_args = (p.x, p.y)
set_tup1 = (2.71, 3.14)
set_tup2 = (3.14, 2.71)
# Centroid operation on point should be point itself
self.assertEqual(p.centroid, pnt.centroid.tuple)
# Now testing the different constructors
pnt2 = Point(tup_args) # e.g., Point((1, 2))
pnt3 = Point(*tup_args) # e.g., Point(1, 2)
self.assertEqual(True, pnt == pnt2)
self.assertEqual(True, pnt == pnt3)
# Now testing setting the x and y
pnt.y = 3.14
pnt.x = 2.71
self.assertEqual(3.14, pnt.y)
self.assertEqual(2.71, pnt.x)
# Setting via the tuple/coords property
pnt.tuple = set_tup1
self.assertEqual(set_tup1, pnt.tuple)
pnt.coords = set_tup2
self.assertEqual(set_tup2, pnt.coords)
prev = pnt # setting the previous geometry
def test02b_multipoints(self):
"Testing MultiPoint objects."
for mp in multipoints:
mpnt = fromstr(mp.wkt)
self.assertEqual(mpnt.geom_type, 'MultiPoint')
self.assertEqual(mpnt.geom_typeid, 4)
self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9)
self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9)
self.assertRaises(GEOSIndexError, mpnt.__getitem__, len(mpnt))
self.assertEqual(mp.centroid, mpnt.centroid.tuple)
self.assertEqual(mp.points, tuple(m.tuple for m in mpnt))
for p in mpnt:
self.assertEqual(p.geom_type, 'Point')
self.assertEqual(p.geom_typeid, 0)
self.assertEqual(p.empty, False)
self.assertEqual(p.valid, True)
def test03a_linestring(self):
"Testing LineString objects."
prev = fromstr('POINT(0 0)')
for l in linestrings:
ls = fromstr(l.wkt)
self.assertEqual(ls.geom_type, 'LineString')
self.assertEqual(ls.geom_typeid, 1)
self.assertEqual(ls.empty, False)
self.assertEqual(ls.ring, False)
if hasattr(l, 'centroid'):
self.assertEqual(l.centroid, ls.centroid.tuple)
if hasattr(l, 'tup'):
self.assertEqual(l.tup, ls.tuple)
self.assertEqual(True, ls == fromstr(l.wkt))
self.assertEqual(False, ls == prev)
self.assertRaises(GEOSIndexError, ls.__getitem__, len(ls))
prev = ls
# Creating a LineString from a tuple, list, and numpy array
self.assertEqual(ls, LineString(ls.tuple)) # tuple
self.assertEqual(ls, LineString(*ls.tuple)) # as individual arguments
self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple])) # as list
self.assertEqual(ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt) # Point individual arguments
if HAS_NUMPY: self.assertEqual(ls, LineString(array(ls.tuple))) # as numpy array
def test03b_multilinestring(self):
"Testing MultiLineString objects."
prev = fromstr('POINT(0 0)')
for l in multilinestrings:
ml = fromstr(l.wkt)
self.assertEqual(ml.geom_type, 'MultiLineString')
self.assertEqual(ml.geom_typeid, 5)
self.assertAlmostEqual(l.centroid[0], ml.centroid.x, 9)
self.assertAlmostEqual(l.centroid[1], ml.centroid.y, 9)
self.assertEqual(True, ml == fromstr(l.wkt))
self.assertEqual(False, ml == prev)
prev = ml
for ls in ml:
self.assertEqual(ls.geom_type, 'LineString')
self.assertEqual(ls.geom_typeid, 1)
self.assertEqual(ls.empty, False)
self.assertRaises(GEOSIndexError, ml.__getitem__, len(ml))
self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt)
self.assertEqual(ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml)))
def test04_linearring(self):
"Testing LinearRing objects."
for rr in linearrings:
lr = fromstr(rr.wkt)
self.assertEqual(lr.geom_type, 'LinearRing')
self.assertEqual(lr.geom_typeid, 2)
self.assertEqual(rr.n_p, len(lr))
self.assertEqual(True, lr.valid)
self.assertEqual(False, lr.empty)
# Creating a LinearRing from a tuple, list, and numpy array
self.assertEqual(lr, LinearRing(lr.tuple))
self.assertEqual(lr, LinearRing(*lr.tuple))
self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple]))
if HAS_NUMPY: self.assertEqual(lr, LinearRing(array(lr.tuple)))
def test05a_polygons(self):
"Testing Polygon objects."
prev = fromstr('POINT(0 0)')
for p in polygons:
# Creating the Polygon, testing its properties.
poly = fromstr(p.wkt)
self.assertEqual(poly.geom_type, 'Polygon')
self.assertEqual(poly.geom_typeid, 3)
self.assertEqual(poly.empty, False)
self.assertEqual(poly.ring, False)
self.assertEqual(p.n_i, poly.num_interior_rings)
self.assertEqual(p.n_i + 1, len(poly)) # Testing __len__
self.assertEqual(p.n_p, poly.num_points)
# Area & Centroid
self.assertAlmostEqual(p.area, poly.area, 9)
self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9)
self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9)
# Testing the geometry equivalence
self.assertEqual(True, poly == fromstr(p.wkt))
self.assertEqual(False, poly == prev) # Should not be equal to previous geometry
self.assertEqual(True, poly != prev)
# Testing the exterior ring
ring = poly.exterior_ring
self.assertEqual(ring.geom_type, 'LinearRing')
self.assertEqual(ring.geom_typeid, 2)
if p.ext_ring_cs:
self.assertEqual(p.ext_ring_cs, ring.tuple)
self.assertEqual(p.ext_ring_cs, poly[0].tuple) # Testing __getitem__
# Testing __getitem__ and __setitem__ on invalid indices
self.assertRaises(GEOSIndexError, poly.__getitem__, len(poly))
self.assertRaises(GEOSIndexError, poly.__setitem__, len(poly), False)
self.assertRaises(GEOSIndexError, poly.__getitem__, -1)
# Testing __iter__
for r in poly:
self.assertEqual(r.geom_type, 'LinearRing')
self.assertEqual(r.geom_typeid, 2)
# Testing polygon construction.
self.assertRaises(TypeError, Polygon.__init__, 0, [1, 2, 3])
self.assertRaises(TypeError, Polygon.__init__, 'foo')
# Polygon(shell, (hole1, ... holeN))
rings = tuple(r for r in poly)
self.assertEqual(poly, Polygon(rings[0], rings[1:]))
# Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN)
ring_tuples = tuple(r.tuple for r in poly)
self.assertEqual(poly, Polygon(*ring_tuples))
# Constructing with tuples of LinearRings.
self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt)
self.assertEqual(poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt)
def test05b_multipolygons(self):
"Testing MultiPolygon objects."
print "\nBEGIN - expecting GEOS_NOTICE; safe to ignore.\n"
prev = fromstr('POINT (0 0)')
for mp in multipolygons:
mpoly = fromstr(mp.wkt)
self.assertEqual(mpoly.geom_type, 'MultiPolygon')
self.assertEqual(mpoly.geom_typeid, 6)
self.assertEqual(mp.valid, mpoly.valid)
if mp.valid:
self.assertEqual(mp.num_geom, mpoly.num_geom)
self.assertEqual(mp.n_p, mpoly.num_coords)
self.assertEqual(mp.num_geom, len(mpoly))
self.assertRaises(GEOSIndexError, mpoly.__getitem__, len(mpoly))
for p in mpoly:
self.assertEqual(p.geom_type, 'Polygon')
self.assertEqual(p.geom_typeid, 3)
self.assertEqual(p.valid, True)
self.assertEqual(mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt)
print "\nEND - expecting GEOS_NOTICE; safe to ignore.\n"
def test06a_memory_hijinks(self):
"Testing Geometry __del__() on rings and polygons."
#### Memory issues with rings and polygons
# These tests are needed to ensure sanity with writable geometries.
# Getting a polygon with interior rings, and pulling out the interior rings
poly = fromstr(polygons[1].wkt)
ring1 = poly[0]
ring2 = poly[1]
# These deletes should be 'harmless' since they are done on child geometries
del ring1
del ring2
ring1 = poly[0]
ring2 = poly[1]
# Deleting the polygon
del poly
# Access to these rings is OK since they are clones.
s1, s2 = str(ring1), str(ring2)
# The previous hijinks tests are now moot because only clones are
# now used =)
def test08_coord_seq(self):
"Testing Coordinate Sequence objects."
for p in polygons:
if p.ext_ring_cs:
# Constructing the polygon and getting the coordinate sequence
poly = fromstr(p.wkt)
cs = poly.exterior_ring.coord_seq
self.assertEqual(p.ext_ring_cs, cs.tuple) # done in the Polygon test too.
self.assertEqual(len(p.ext_ring_cs), len(cs)) # Making sure __len__ works
# Checks __getitem__ and __setitem__
for i in xrange(len(p.ext_ring_cs)):
c1 = p.ext_ring_cs[i] # Expected value
c2 = cs[i] # Value from coordseq
self.assertEqual(c1, c2)
# Constructing the test value to set the coordinate sequence with
if len(c1) == 2: tset = (5, 23)
else: tset = (5, 23, 8)
cs[i] = tset
# Making sure every set point matches what we expect
for j in range(len(tset)):
cs[i] = tset
self.assertEqual(tset[j], cs[i][j])
def test09_relate_pattern(self):
"Testing relate() and relate_pattern()."
g = fromstr('POINT (0 0)')
self.assertRaises(GEOSException, g.relate_pattern, 0, 'invalid pattern, yo')
for i in xrange(len(relate_geoms)):
g_tup = relate_geoms[i]
a = fromstr(g_tup[0].wkt)
b = fromstr(g_tup[1].wkt)
pat = g_tup[2]
result = g_tup[3]
self.assertEqual(result, a.relate_pattern(b, pat))
self.assertEqual(pat, a.relate(b))
def test10_intersection(self):
"Testing intersects() and intersection()."
for i in xrange(len(topology_geoms)):
g_tup = topology_geoms[i]
a = fromstr(g_tup[0].wkt)
b = fromstr(g_tup[1].wkt)
i1 = fromstr(intersect_geoms[i].wkt)
self.assertEqual(True, a.intersects(b))
i2 = a.intersection(b)
self.assertEqual(i1, i2)
self.assertEqual(i1, a & b) # __and__ is intersection operator
a &= b # testing __iand__
self.assertEqual(i1, a)
def test11_union(self):
"Testing union()."
for i in xrange(len(topology_geoms)):
g_tup = topology_geoms[i]
a = fromstr(g_tup[0].wkt)
b = fromstr(g_tup[1].wkt)
u1 = fromstr(union_geoms[i].wkt)
u2 = a.union(b)
self.assertEqual(u1, u2)
self.assertEqual(u1, a | b) # __or__ is union operator
a |= b # testing __ior__
self.assertEqual(u1, a)
def test12_difference(self):
"Testing difference()."
for i in xrange(len(topology_geoms)):
g_tup = topology_geoms[i]
a = fromstr(g_tup[0].wkt)
b = fromstr(g_tup[1].wkt)
d1 = fromstr(diff_geoms[i].wkt)
d2 = a.difference(b)
self.assertEqual(d1, d2)
self.assertEqual(d1, a - b) # __sub__ is difference operator
a -= b # testing __isub__
self.assertEqual(d1, a)
def test13_symdifference(self):
"Testing sym_difference()."
for i in xrange(len(topology_geoms)):
g_tup = topology_geoms[i]
a = fromstr(g_tup[0].wkt)
b = fromstr(g_tup[1].wkt)
d1 = fromstr(sdiff_geoms[i].wkt)
d2 = a.sym_difference(b)
self.assertEqual(d1, d2)
self.assertEqual(d1, a ^ b) # __xor__ is symmetric difference operator
a ^= b # testing __ixor__
self.assertEqual(d1, a)
def test14_buffer(self):
"Testing buffer()."
for i in xrange(len(buffer_geoms)):
g_tup = buffer_geoms[i]
g = fromstr(g_tup[0].wkt)
# The buffer we expect
exp_buf = fromstr(g_tup[1].wkt)
# Can't use a floating-point for the number of quadsegs.
self.assertRaises(ArgumentError, g.buffer, g_tup[2], float(g_tup[3]))
# Constructing our buffer
buf = g.buffer(g_tup[2], g_tup[3])
self.assertEqual(exp_buf.num_coords, buf.num_coords)
self.assertEqual(len(exp_buf), len(buf))
# Now assuring that each point in the buffer is almost equal
for j in xrange(len(exp_buf)):
exp_ring = exp_buf[j]
buf_ring = buf[j]
self.assertEqual(len(exp_ring), len(buf_ring))
for k in xrange(len(exp_ring)):
# Asserting the X, Y of each point are almost equal (due to floating point imprecision)
self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9)
self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9)
def test15_srid(self):
"Testing the SRID property and keyword."
# Testing SRID keyword on Point
pnt = Point(5, 23, srid=4326)
self.assertEqual(4326, pnt.srid)
pnt.srid = 3084
self.assertEqual(3084, pnt.srid)
self.assertRaises(ArgumentError, pnt.set_srid, '4326')
# Testing SRID keyword on fromstr(), and on Polygon rings.
poly = fromstr(polygons[1].wkt, srid=4269)
self.assertEqual(4269, poly.srid)
for ring in poly: self.assertEqual(4269, ring.srid)
poly.srid = 4326
self.assertEqual(4326, poly.shell.srid)
# Testing SRID keyword on GeometryCollection
gc = GeometryCollection(Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021)
self.assertEqual(32021, gc.srid)
for i in range(len(gc)): self.assertEqual(32021, gc[i].srid)
# GEOS may get the SRID from HEXEWKB
# 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS
# using `SELECT GeomFromText('POINT (5 23)', 4326);`.
hex = '0101000020E610000000000000000014400000000000003740'
p1 = fromstr(hex)
self.assertEqual(4326, p1.srid)
# In GEOS 3.0.0rc1-4 when the EWKB and/or HEXEWKB is exported,
# the SRID information is lost and set to -1 -- this is not a
# problem on the 3.0.0 version (another reason to upgrade).
exp_srid = self.null_srid
p2 = fromstr(p1.hex)
self.assertEqual(exp_srid, p2.srid)
p3 = fromstr(p1.hex, srid=-1) # -1 is intended.
self.assertEqual(-1, p3.srid)
def test16_mutable_geometries(self):
"Testing the mutability of Polygons and Geometry Collections."
### Testing the mutability of Polygons ###
for p in polygons:
poly = fromstr(p.wkt)
# Should only be able to use __setitem__ with LinearRing geometries.
self.assertRaises(TypeError, poly.__setitem__, 0, LineString((1, 1), (2, 2)))
# Constructing the new shell by adding 500 to every point in the old shell.
shell_tup = poly.shell.tuple
new_coords = []
for point in shell_tup: new_coords.append((point[0] + 500., point[1] + 500.))
new_shell = LinearRing(*tuple(new_coords))
# Assigning polygon's exterior ring w/the new shell
poly.exterior_ring = new_shell
s = str(new_shell) # new shell is still accessible
self.assertEqual(poly.exterior_ring, new_shell)
self.assertEqual(poly[0], new_shell)
### Testing the mutability of Geometry Collections
for tg in multipoints:
mp = fromstr(tg.wkt)
for i in range(len(mp)):
# Creating a random point.
pnt = mp[i]
new = Point(random.randint(1, 100), random.randint(1, 100))
# Testing the assignment
mp[i] = new
s = str(new) # what was used for the assignment is still accessible
self.assertEqual(mp[i], new)
self.assertEqual(mp[i].wkt, new.wkt)
self.assertNotEqual(pnt, mp[i])
# MultiPolygons involve much more memory management because each
# Polygon w/in the collection has its own rings.
for tg in multipolygons:
mpoly = fromstr(tg.wkt)
for i in xrange(len(mpoly)):
poly = mpoly[i]
old_poly = mpoly[i]
# Offsetting the each ring in the polygon by 500.
for j in xrange(len(poly)):
r = poly[j]
for k in xrange(len(r)): r[k] = (r[k][0] + 500., r[k][1] + 500.)
poly[j] = r
self.assertNotEqual(mpoly[i], poly)
# Testing the assignment
mpoly[i] = poly
s = str(poly) # Still accessible
self.assertEqual(mpoly[i], poly)
self.assertNotEqual(mpoly[i], old_poly)
# Extreme (!!) __setitem__ -- no longer works, have to detect
# in the first object that __setitem__ is called in the subsequent
# objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)?
#mpoly[0][0][0] = (3.14, 2.71)
#self.assertEqual((3.14, 2.71), mpoly[0][0][0])
# Doing it more slowly..
#self.assertEqual((3.14, 2.71), mpoly[0].shell[0])
#del mpoly
def test17_threed(self):
"Testing three-dimensional geometries."
# Testing a 3D Point
pnt = Point(2, 3, 8)
self.assertEqual((2.,3.,8.), pnt.coords)
self.assertRaises(TypeError, pnt.set_coords, (1.,2.))
pnt.coords = (1.,2.,3.)
self.assertEqual((1.,2.,3.), pnt.coords)
# Testing a 3D LineString
ls = LineString((2., 3., 8.), (50., 250., -117.))
self.assertEqual(((2.,3.,8.), (50.,250.,-117.)), ls.tuple)
self.assertRaises(TypeError, ls.__setitem__, 0, (1.,2.))
ls[0] = (1.,2.,3.)
self.assertEqual((1.,2.,3.), ls[0])
def test18_distance(self):
"Testing the distance() function."
# Distance to self should be 0.
pnt = Point(0, 0)
self.assertEqual(0.0, pnt.distance(Point(0, 0)))
# Distance should be 1
self.assertEqual(1.0, pnt.distance(Point(0, 1)))
# Distance should be ~ sqrt(2)
self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11)
# Distances are from the closest vertex in each geometry --
# should be 3 (distance from (2, 2) to (5, 2)).
ls1 = LineString((0, 0), (1, 1), (2, 2))
ls2 = LineString((5, 2), (6, 1), (7, 0))
self.assertEqual(3, ls1.distance(ls2))
def test19_length(self):
"Testing the length property."
# Points have 0 length.
pnt = Point(0, 0)
self.assertEqual(0.0, pnt.length)
# Should be ~ sqrt(2)
ls = LineString((0, 0), (1, 1))
self.assertAlmostEqual(1.41421356237, ls.length, 11)
# Should be circumfrence of Polygon
poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
self.assertEqual(4.0, poly.length)
# Should be sum of each element's length in collection.
mpoly = MultiPolygon(poly.clone(), poly)
self.assertEqual(8.0, mpoly.length)
def test20_emptyCollections(self):
"Testing empty geometries and collections."
gc1 = GeometryCollection([])
gc2 = fromstr('GEOMETRYCOLLECTION EMPTY')
pnt = fromstr('POINT EMPTY')
ls = fromstr('LINESTRING EMPTY')
poly = fromstr('POLYGON EMPTY')
mls = fromstr('MULTILINESTRING EMPTY')
mpoly1 = fromstr('MULTIPOLYGON EMPTY')
mpoly2 = MultiPolygon(())
for g in [gc1, gc2, pnt, ls, poly, mls, mpoly1, mpoly2]:
self.assertEqual(True, g.empty)
# Testing len() and num_geom.
if isinstance(g, Polygon):
self.assertEqual(1, len(g)) # Has one empty linear ring
self.assertEqual(1, g.num_geom)
self.assertEqual(0, len(g[0]))
elif isinstance(g, (Point, LineString)):
self.assertEqual(1, g.num_geom)
self.assertEqual(0, len(g))
else:
self.assertEqual(0, g.num_geom)
self.assertEqual(0, len(g))
# Testing __getitem__ (doesn't work on Point or Polygon)
if isinstance(g, Point):
self.assertRaises(GEOSIndexError, g.get_x)
elif isinstance(g, Polygon):
lr = g.shell
self.assertEqual('LINEARRING EMPTY', lr.wkt)
self.assertEqual(0, len(lr))
self.assertEqual(True, lr.empty)
self.assertRaises(GEOSIndexError, lr.__getitem__, 0)
else:
self.assertRaises(GEOSIndexError, g.__getitem__, 0)
def test21_test_gdal(self):
"Testing `ogr` and `srs` properties."
if not HAS_GDAL: return
g1 = fromstr('POINT(5 23)')
self.assertEqual(True, isinstance(g1.ogr, OGRGeometry))
self.assertEqual(g1.srs, None)
g2 = fromstr('LINESTRING(0 0, 5 5, 23 23)', srid=4326)
self.assertEqual(True, isinstance(g2.ogr, OGRGeometry))
self.assertEqual(True, isinstance(g2.srs, SpatialReference))
self.assertEqual(g2.hex, g2.ogr.hex)
self.assertEqual('WGS 84', g2.srs.name)
def test22_copy(self):
"Testing use with the Python `copy` module."
import copy
poly = GEOSGeometry('POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))')
cpy1 = copy.copy(poly)
cpy2 = copy.deepcopy(poly)
self.assertNotEqual(poly._ptr, cpy1._ptr)
self.assertNotEqual(poly._ptr, cpy2._ptr)
def test23_transform(self):
"Testing `transform` method."
if not HAS_GDAL: return
orig = GEOSGeometry('POINT (-104.609 38.255)', 4326)
trans = GEOSGeometry('POINT (992385.4472045 481455.4944650)', 2774)
# Using a srid, a SpatialReference object, and a CoordTransform object
# for transformations.
t1, t2, t3 = orig.clone(), orig.clone(), orig.clone()
t1.transform(trans.srid)
t2.transform(SpatialReference('EPSG:2774'))
ct = CoordTransform(SpatialReference('WGS84'), SpatialReference(2774))
t3.transform(ct)
# Testing use of the `clone` keyword.
k1 = orig.clone()
k2 = k1.transform(trans.srid, clone=True)
self.assertEqual(k1, orig)
self.assertNotEqual(k1, k2)
prec = 3
for p in (t1, t2, t3, k2):
self.assertAlmostEqual(trans.x, p.x, prec)
self.assertAlmostEqual(trans.y, p.y, prec)
def test24_extent(self):
"Testing `extent` method."
# The xmin, ymin, xmax, ymax of the MultiPoint should be returned.
mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50))
self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent)
pnt = Point(5.23, 17.8)
# Extent of points is just the point itself repeated.
self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent)
# Testing on the 'real world' Polygon.
poly = fromstr(polygons[3].wkt)
ring = poly.shell
x, y = ring.x, ring.y
xmin, ymin = min(x), min(y)
xmax, ymax = max(x), max(y)
self.assertEqual((xmin, ymin, xmax, ymax), poly.extent)
def test25_pickle(self):
"Testing pickling and unpickling support."
# Using both pickle and cPickle -- just 'cause.
import pickle, cPickle
# Creating a list of test geometries for pickling,
# and setting the SRID on some of them.
def get_geoms(lst, srid=None):
return [GEOSGeometry(tg.wkt, srid) for tg in lst]
tgeoms = get_geoms(points)
tgeoms.extend(get_geoms(multilinestrings, 4326))
tgeoms.extend(get_geoms(polygons, 3084))
tgeoms.extend(get_geoms(multipolygons, 900913))
# The SRID won't be exported in GEOS 3.0 release candidates.
no_srid = self.null_srid == -1
for geom in tgeoms:
s1, s2 = cPickle.dumps(geom), pickle.dumps(geom)
g1, g2 = cPickle.loads(s1), pickle.loads(s2)
for tmpg in (g1, g2):
self.assertEqual(geom, tmpg)
if not no_srid: self.assertEqual(geom.srid, tmpg.srid)
def suite():
s = unittest.TestSuite()
s.addTest(unittest.makeSuite(GEOSTest))
return s
def run(verbosity=2):
unittest.TextTestRunner(verbosity=verbosity).run(suite())