| import random, unittest, sys |
| from ctypes import ArgumentError |
| from django.contrib.gis.geos import * |
| from django.contrib.gis.geos.base import HAS_GDAL |
| from django.contrib.gis.tests.geometries import * |
| |
| if HAS_NUMPY: from numpy import array |
| if HAS_GDAL: from django.contrib.gis.gdal import OGRGeometry, SpatialReference, CoordTransform, GEOJSON |
| |
| class GEOSTest(unittest.TestCase): |
| |
| @property |
| def null_srid(self): |
| """ |
| Returns the proper null SRID depending on the GEOS version. |
| See the comments in `test15_srid` for more details. |
| """ |
| info = geos_version_info() |
| if info['version'] == '3.0.0' and info['release_candidate']: |
| return -1 |
| else: |
| return None |
| |
| def test01a_wkt(self): |
| "Testing WKT output." |
| for g in wkt_out: |
| geom = fromstr(g.wkt) |
| self.assertEqual(g.ewkt, geom.wkt) |
| |
| def test01b_hex(self): |
| "Testing HEX output." |
| for g in hex_wkt: |
| geom = fromstr(g.wkt) |
| self.assertEqual(g.hex, geom.hex) |
| |
| def test01c_kml(self): |
| "Testing KML output." |
| for tg in wkt_out: |
| geom = fromstr(tg.wkt) |
| kml = getattr(tg, 'kml', False) |
| if kml: self.assertEqual(kml, geom.kml) |
| |
| def test01d_errors(self): |
| "Testing the Error handlers." |
| # string-based |
| print "\nBEGIN - expecting GEOS_ERROR; safe to ignore.\n" |
| for err in errors: |
| try: |
| g = fromstr(err.wkt) |
| except (GEOSException, ValueError): |
| pass |
| print "\nEND - expecting GEOS_ERROR; safe to ignore.\n" |
| |
| class NotAGeometry(object): |
| pass |
| |
| # Some other object |
| self.assertRaises(TypeError, GEOSGeometry, NotAGeometry()) |
| # None |
| self.assertRaises(TypeError, GEOSGeometry, None) |
| # Bad WKB |
| self.assertRaises(GEOSException, GEOSGeometry, buffer('0')) |
| |
| def test01e_wkb(self): |
| "Testing WKB output." |
| from binascii import b2a_hex |
| for g in hex_wkt: |
| geom = fromstr(g.wkt) |
| wkb = geom.wkb |
| self.assertEqual(b2a_hex(wkb).upper(), g.hex) |
| |
| def test01f_create_hex(self): |
| "Testing creation from HEX." |
| for g in hex_wkt: |
| geom_h = GEOSGeometry(g.hex) |
| # we need to do this so decimal places get normalised |
| geom_t = fromstr(g.wkt) |
| self.assertEqual(geom_t.wkt, geom_h.wkt) |
| |
| def test01g_create_wkb(self): |
| "Testing creation from WKB." |
| from binascii import a2b_hex |
| for g in hex_wkt: |
| wkb = buffer(a2b_hex(g.hex)) |
| geom_h = GEOSGeometry(wkb) |
| # we need to do this so decimal places get normalised |
| geom_t = fromstr(g.wkt) |
| self.assertEqual(geom_t.wkt, geom_h.wkt) |
| |
| def test01h_ewkt(self): |
| "Testing EWKT." |
| srid = 32140 |
| for p in polygons: |
| ewkt = 'SRID=%d;%s' % (srid, p.wkt) |
| poly = fromstr(ewkt) |
| self.assertEqual(srid, poly.srid) |
| self.assertEqual(srid, poly.shell.srid) |
| self.assertEqual(srid, fromstr(poly.ewkt).srid) # Checking export |
| |
| def test01i_json(self): |
| "Testing GeoJSON input/output (via GDAL)." |
| if not HAS_GDAL or not GEOJSON: return |
| for g in json_geoms: |
| geom = GEOSGeometry(g.wkt) |
| self.assertEqual(g.json, geom.json) |
| self.assertEqual(g.json, geom.geojson) |
| self.assertEqual(GEOSGeometry(g.wkt), GEOSGeometry(geom.json)) |
| |
| def test01j_eq(self): |
| "Testing equivalence." |
| p = fromstr('POINT(5 23)') |
| self.assertEqual(p, p.wkt) |
| self.assertNotEqual(p, 'foo') |
| ls = fromstr('LINESTRING(0 0, 1 1, 5 5)') |
| self.assertEqual(ls, ls.wkt) |
| self.assertNotEqual(p, 'bar') |
| # Error shouldn't be raise on equivalence testing with |
| # an invalid type. |
| for g in (p, ls): |
| self.assertNotEqual(g, None) |
| self.assertNotEqual(g, {'foo' : 'bar'}) |
| self.assertNotEqual(g, False) |
| |
| def test02a_points(self): |
| "Testing Point objects." |
| prev = fromstr('POINT(0 0)') |
| for p in points: |
| # Creating the point from the WKT |
| pnt = fromstr(p.wkt) |
| self.assertEqual(pnt.geom_type, 'Point') |
| self.assertEqual(pnt.geom_typeid, 0) |
| self.assertEqual(p.x, pnt.x) |
| self.assertEqual(p.y, pnt.y) |
| self.assertEqual(True, pnt == fromstr(p.wkt)) |
| self.assertEqual(False, pnt == prev) |
| |
| # Making sure that the point's X, Y components are what we expect |
| self.assertAlmostEqual(p.x, pnt.tuple[0], 9) |
| self.assertAlmostEqual(p.y, pnt.tuple[1], 9) |
| |
| # Testing the third dimension, and getting the tuple arguments |
| if hasattr(p, 'z'): |
| self.assertEqual(True, pnt.hasz) |
| self.assertEqual(p.z, pnt.z) |
| self.assertEqual(p.z, pnt.tuple[2], 9) |
| tup_args = (p.x, p.y, p.z) |
| set_tup1 = (2.71, 3.14, 5.23) |
| set_tup2 = (5.23, 2.71, 3.14) |
| else: |
| self.assertEqual(False, pnt.hasz) |
| self.assertEqual(None, pnt.z) |
| tup_args = (p.x, p.y) |
| set_tup1 = (2.71, 3.14) |
| set_tup2 = (3.14, 2.71) |
| |
| # Centroid operation on point should be point itself |
| self.assertEqual(p.centroid, pnt.centroid.tuple) |
| |
| # Now testing the different constructors |
| pnt2 = Point(tup_args) # e.g., Point((1, 2)) |
| pnt3 = Point(*tup_args) # e.g., Point(1, 2) |
| self.assertEqual(True, pnt == pnt2) |
| self.assertEqual(True, pnt == pnt3) |
| |
| # Now testing setting the x and y |
| pnt.y = 3.14 |
| pnt.x = 2.71 |
| self.assertEqual(3.14, pnt.y) |
| self.assertEqual(2.71, pnt.x) |
| |
| # Setting via the tuple/coords property |
| pnt.tuple = set_tup1 |
| self.assertEqual(set_tup1, pnt.tuple) |
| pnt.coords = set_tup2 |
| self.assertEqual(set_tup2, pnt.coords) |
| |
| prev = pnt # setting the previous geometry |
| |
| def test02b_multipoints(self): |
| "Testing MultiPoint objects." |
| for mp in multipoints: |
| mpnt = fromstr(mp.wkt) |
| self.assertEqual(mpnt.geom_type, 'MultiPoint') |
| self.assertEqual(mpnt.geom_typeid, 4) |
| |
| self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9) |
| self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9) |
| |
| self.assertRaises(GEOSIndexError, mpnt.__getitem__, len(mpnt)) |
| self.assertEqual(mp.centroid, mpnt.centroid.tuple) |
| self.assertEqual(mp.points, tuple(m.tuple for m in mpnt)) |
| for p in mpnt: |
| self.assertEqual(p.geom_type, 'Point') |
| self.assertEqual(p.geom_typeid, 0) |
| self.assertEqual(p.empty, False) |
| self.assertEqual(p.valid, True) |
| |
| def test03a_linestring(self): |
| "Testing LineString objects." |
| prev = fromstr('POINT(0 0)') |
| for l in linestrings: |
| ls = fromstr(l.wkt) |
| self.assertEqual(ls.geom_type, 'LineString') |
| self.assertEqual(ls.geom_typeid, 1) |
| self.assertEqual(ls.empty, False) |
| self.assertEqual(ls.ring, False) |
| if hasattr(l, 'centroid'): |
| self.assertEqual(l.centroid, ls.centroid.tuple) |
| if hasattr(l, 'tup'): |
| self.assertEqual(l.tup, ls.tuple) |
| |
| self.assertEqual(True, ls == fromstr(l.wkt)) |
| self.assertEqual(False, ls == prev) |
| self.assertRaises(GEOSIndexError, ls.__getitem__, len(ls)) |
| prev = ls |
| |
| # Creating a LineString from a tuple, list, and numpy array |
| self.assertEqual(ls, LineString(ls.tuple)) # tuple |
| self.assertEqual(ls, LineString(*ls.tuple)) # as individual arguments |
| self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple])) # as list |
| self.assertEqual(ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt) # Point individual arguments |
| if HAS_NUMPY: self.assertEqual(ls, LineString(array(ls.tuple))) # as numpy array |
| |
| def test03b_multilinestring(self): |
| "Testing MultiLineString objects." |
| prev = fromstr('POINT(0 0)') |
| for l in multilinestrings: |
| ml = fromstr(l.wkt) |
| self.assertEqual(ml.geom_type, 'MultiLineString') |
| self.assertEqual(ml.geom_typeid, 5) |
| |
| self.assertAlmostEqual(l.centroid[0], ml.centroid.x, 9) |
| self.assertAlmostEqual(l.centroid[1], ml.centroid.y, 9) |
| |
| self.assertEqual(True, ml == fromstr(l.wkt)) |
| self.assertEqual(False, ml == prev) |
| prev = ml |
| |
| for ls in ml: |
| self.assertEqual(ls.geom_type, 'LineString') |
| self.assertEqual(ls.geom_typeid, 1) |
| self.assertEqual(ls.empty, False) |
| |
| self.assertRaises(GEOSIndexError, ml.__getitem__, len(ml)) |
| self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt) |
| self.assertEqual(ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml))) |
| |
| def test04_linearring(self): |
| "Testing LinearRing objects." |
| for rr in linearrings: |
| lr = fromstr(rr.wkt) |
| self.assertEqual(lr.geom_type, 'LinearRing') |
| self.assertEqual(lr.geom_typeid, 2) |
| self.assertEqual(rr.n_p, len(lr)) |
| self.assertEqual(True, lr.valid) |
| self.assertEqual(False, lr.empty) |
| |
| # Creating a LinearRing from a tuple, list, and numpy array |
| self.assertEqual(lr, LinearRing(lr.tuple)) |
| self.assertEqual(lr, LinearRing(*lr.tuple)) |
| self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple])) |
| if HAS_NUMPY: self.assertEqual(lr, LinearRing(array(lr.tuple))) |
| |
| def test05a_polygons(self): |
| "Testing Polygon objects." |
| prev = fromstr('POINT(0 0)') |
| for p in polygons: |
| # Creating the Polygon, testing its properties. |
| poly = fromstr(p.wkt) |
| self.assertEqual(poly.geom_type, 'Polygon') |
| self.assertEqual(poly.geom_typeid, 3) |
| self.assertEqual(poly.empty, False) |
| self.assertEqual(poly.ring, False) |
| self.assertEqual(p.n_i, poly.num_interior_rings) |
| self.assertEqual(p.n_i + 1, len(poly)) # Testing __len__ |
| self.assertEqual(p.n_p, poly.num_points) |
| |
| # Area & Centroid |
| self.assertAlmostEqual(p.area, poly.area, 9) |
| self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9) |
| self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9) |
| |
| # Testing the geometry equivalence |
| self.assertEqual(True, poly == fromstr(p.wkt)) |
| self.assertEqual(False, poly == prev) # Should not be equal to previous geometry |
| self.assertEqual(True, poly != prev) |
| |
| # Testing the exterior ring |
| ring = poly.exterior_ring |
| self.assertEqual(ring.geom_type, 'LinearRing') |
| self.assertEqual(ring.geom_typeid, 2) |
| if p.ext_ring_cs: |
| self.assertEqual(p.ext_ring_cs, ring.tuple) |
| self.assertEqual(p.ext_ring_cs, poly[0].tuple) # Testing __getitem__ |
| |
| # Testing __getitem__ and __setitem__ on invalid indices |
| self.assertRaises(GEOSIndexError, poly.__getitem__, len(poly)) |
| self.assertRaises(GEOSIndexError, poly.__setitem__, len(poly), False) |
| self.assertRaises(GEOSIndexError, poly.__getitem__, -1) |
| |
| # Testing __iter__ |
| for r in poly: |
| self.assertEqual(r.geom_type, 'LinearRing') |
| self.assertEqual(r.geom_typeid, 2) |
| |
| # Testing polygon construction. |
| self.assertRaises(TypeError, Polygon.__init__, 0, [1, 2, 3]) |
| self.assertRaises(TypeError, Polygon.__init__, 'foo') |
| |
| # Polygon(shell, (hole1, ... holeN)) |
| rings = tuple(r for r in poly) |
| self.assertEqual(poly, Polygon(rings[0], rings[1:])) |
| |
| # Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN) |
| ring_tuples = tuple(r.tuple for r in poly) |
| self.assertEqual(poly, Polygon(*ring_tuples)) |
| |
| # Constructing with tuples of LinearRings. |
| self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt) |
| self.assertEqual(poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt) |
| |
| def test05b_multipolygons(self): |
| "Testing MultiPolygon objects." |
| print "\nBEGIN - expecting GEOS_NOTICE; safe to ignore.\n" |
| prev = fromstr('POINT (0 0)') |
| for mp in multipolygons: |
| mpoly = fromstr(mp.wkt) |
| self.assertEqual(mpoly.geom_type, 'MultiPolygon') |
| self.assertEqual(mpoly.geom_typeid, 6) |
| self.assertEqual(mp.valid, mpoly.valid) |
| |
| if mp.valid: |
| self.assertEqual(mp.num_geom, mpoly.num_geom) |
| self.assertEqual(mp.n_p, mpoly.num_coords) |
| self.assertEqual(mp.num_geom, len(mpoly)) |
| self.assertRaises(GEOSIndexError, mpoly.__getitem__, len(mpoly)) |
| for p in mpoly: |
| self.assertEqual(p.geom_type, 'Polygon') |
| self.assertEqual(p.geom_typeid, 3) |
| self.assertEqual(p.valid, True) |
| self.assertEqual(mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt) |
| |
| print "\nEND - expecting GEOS_NOTICE; safe to ignore.\n" |
| |
| def test06a_memory_hijinks(self): |
| "Testing Geometry __del__() on rings and polygons." |
| #### Memory issues with rings and polygons |
| |
| # These tests are needed to ensure sanity with writable geometries. |
| |
| # Getting a polygon with interior rings, and pulling out the interior rings |
| poly = fromstr(polygons[1].wkt) |
| ring1 = poly[0] |
| ring2 = poly[1] |
| |
| # These deletes should be 'harmless' since they are done on child geometries |
| del ring1 |
| del ring2 |
| ring1 = poly[0] |
| ring2 = poly[1] |
| |
| # Deleting the polygon |
| del poly |
| |
| # Access to these rings is OK since they are clones. |
| s1, s2 = str(ring1), str(ring2) |
| |
| # The previous hijinks tests are now moot because only clones are |
| # now used =) |
| |
| def test08_coord_seq(self): |
| "Testing Coordinate Sequence objects." |
| for p in polygons: |
| if p.ext_ring_cs: |
| # Constructing the polygon and getting the coordinate sequence |
| poly = fromstr(p.wkt) |
| cs = poly.exterior_ring.coord_seq |
| |
| self.assertEqual(p.ext_ring_cs, cs.tuple) # done in the Polygon test too. |
| self.assertEqual(len(p.ext_ring_cs), len(cs)) # Making sure __len__ works |
| |
| # Checks __getitem__ and __setitem__ |
| for i in xrange(len(p.ext_ring_cs)): |
| c1 = p.ext_ring_cs[i] # Expected value |
| c2 = cs[i] # Value from coordseq |
| self.assertEqual(c1, c2) |
| |
| # Constructing the test value to set the coordinate sequence with |
| if len(c1) == 2: tset = (5, 23) |
| else: tset = (5, 23, 8) |
| cs[i] = tset |
| |
| # Making sure every set point matches what we expect |
| for j in range(len(tset)): |
| cs[i] = tset |
| self.assertEqual(tset[j], cs[i][j]) |
| |
| def test09_relate_pattern(self): |
| "Testing relate() and relate_pattern()." |
| g = fromstr('POINT (0 0)') |
| self.assertRaises(GEOSException, g.relate_pattern, 0, 'invalid pattern, yo') |
| for i in xrange(len(relate_geoms)): |
| g_tup = relate_geoms[i] |
| a = fromstr(g_tup[0].wkt) |
| b = fromstr(g_tup[1].wkt) |
| pat = g_tup[2] |
| result = g_tup[3] |
| self.assertEqual(result, a.relate_pattern(b, pat)) |
| self.assertEqual(pat, a.relate(b)) |
| |
| def test10_intersection(self): |
| "Testing intersects() and intersection()." |
| for i in xrange(len(topology_geoms)): |
| g_tup = topology_geoms[i] |
| a = fromstr(g_tup[0].wkt) |
| b = fromstr(g_tup[1].wkt) |
| i1 = fromstr(intersect_geoms[i].wkt) |
| self.assertEqual(True, a.intersects(b)) |
| i2 = a.intersection(b) |
| self.assertEqual(i1, i2) |
| self.assertEqual(i1, a & b) # __and__ is intersection operator |
| a &= b # testing __iand__ |
| self.assertEqual(i1, a) |
| |
| def test11_union(self): |
| "Testing union()." |
| for i in xrange(len(topology_geoms)): |
| g_tup = topology_geoms[i] |
| a = fromstr(g_tup[0].wkt) |
| b = fromstr(g_tup[1].wkt) |
| u1 = fromstr(union_geoms[i].wkt) |
| u2 = a.union(b) |
| self.assertEqual(u1, u2) |
| self.assertEqual(u1, a | b) # __or__ is union operator |
| a |= b # testing __ior__ |
| self.assertEqual(u1, a) |
| |
| def test12_difference(self): |
| "Testing difference()." |
| for i in xrange(len(topology_geoms)): |
| g_tup = topology_geoms[i] |
| a = fromstr(g_tup[0].wkt) |
| b = fromstr(g_tup[1].wkt) |
| d1 = fromstr(diff_geoms[i].wkt) |
| d2 = a.difference(b) |
| self.assertEqual(d1, d2) |
| self.assertEqual(d1, a - b) # __sub__ is difference operator |
| a -= b # testing __isub__ |
| self.assertEqual(d1, a) |
| |
| def test13_symdifference(self): |
| "Testing sym_difference()." |
| for i in xrange(len(topology_geoms)): |
| g_tup = topology_geoms[i] |
| a = fromstr(g_tup[0].wkt) |
| b = fromstr(g_tup[1].wkt) |
| d1 = fromstr(sdiff_geoms[i].wkt) |
| d2 = a.sym_difference(b) |
| self.assertEqual(d1, d2) |
| self.assertEqual(d1, a ^ b) # __xor__ is symmetric difference operator |
| a ^= b # testing __ixor__ |
| self.assertEqual(d1, a) |
| |
| def test14_buffer(self): |
| "Testing buffer()." |
| for i in xrange(len(buffer_geoms)): |
| g_tup = buffer_geoms[i] |
| g = fromstr(g_tup[0].wkt) |
| |
| # The buffer we expect |
| exp_buf = fromstr(g_tup[1].wkt) |
| |
| # Can't use a floating-point for the number of quadsegs. |
| self.assertRaises(ArgumentError, g.buffer, g_tup[2], float(g_tup[3])) |
| |
| # Constructing our buffer |
| buf = g.buffer(g_tup[2], g_tup[3]) |
| self.assertEqual(exp_buf.num_coords, buf.num_coords) |
| self.assertEqual(len(exp_buf), len(buf)) |
| |
| # Now assuring that each point in the buffer is almost equal |
| for j in xrange(len(exp_buf)): |
| exp_ring = exp_buf[j] |
| buf_ring = buf[j] |
| self.assertEqual(len(exp_ring), len(buf_ring)) |
| for k in xrange(len(exp_ring)): |
| # Asserting the X, Y of each point are almost equal (due to floating point imprecision) |
| self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9) |
| self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9) |
| |
| def test15_srid(self): |
| "Testing the SRID property and keyword." |
| # Testing SRID keyword on Point |
| pnt = Point(5, 23, srid=4326) |
| self.assertEqual(4326, pnt.srid) |
| pnt.srid = 3084 |
| self.assertEqual(3084, pnt.srid) |
| self.assertRaises(ArgumentError, pnt.set_srid, '4326') |
| |
| # Testing SRID keyword on fromstr(), and on Polygon rings. |
| poly = fromstr(polygons[1].wkt, srid=4269) |
| self.assertEqual(4269, poly.srid) |
| for ring in poly: self.assertEqual(4269, ring.srid) |
| poly.srid = 4326 |
| self.assertEqual(4326, poly.shell.srid) |
| |
| # Testing SRID keyword on GeometryCollection |
| gc = GeometryCollection(Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021) |
| self.assertEqual(32021, gc.srid) |
| for i in range(len(gc)): self.assertEqual(32021, gc[i].srid) |
| |
| # GEOS may get the SRID from HEXEWKB |
| # 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS |
| # using `SELECT GeomFromText('POINT (5 23)', 4326);`. |
| hex = '0101000020E610000000000000000014400000000000003740' |
| p1 = fromstr(hex) |
| self.assertEqual(4326, p1.srid) |
| |
| # In GEOS 3.0.0rc1-4 when the EWKB and/or HEXEWKB is exported, |
| # the SRID information is lost and set to -1 -- this is not a |
| # problem on the 3.0.0 version (another reason to upgrade). |
| exp_srid = self.null_srid |
| |
| p2 = fromstr(p1.hex) |
| self.assertEqual(exp_srid, p2.srid) |
| p3 = fromstr(p1.hex, srid=-1) # -1 is intended. |
| self.assertEqual(-1, p3.srid) |
| |
| def test16_mutable_geometries(self): |
| "Testing the mutability of Polygons and Geometry Collections." |
| ### Testing the mutability of Polygons ### |
| for p in polygons: |
| poly = fromstr(p.wkt) |
| |
| # Should only be able to use __setitem__ with LinearRing geometries. |
| self.assertRaises(TypeError, poly.__setitem__, 0, LineString((1, 1), (2, 2))) |
| |
| # Constructing the new shell by adding 500 to every point in the old shell. |
| shell_tup = poly.shell.tuple |
| new_coords = [] |
| for point in shell_tup: new_coords.append((point[0] + 500., point[1] + 500.)) |
| new_shell = LinearRing(*tuple(new_coords)) |
| |
| # Assigning polygon's exterior ring w/the new shell |
| poly.exterior_ring = new_shell |
| s = str(new_shell) # new shell is still accessible |
| self.assertEqual(poly.exterior_ring, new_shell) |
| self.assertEqual(poly[0], new_shell) |
| |
| ### Testing the mutability of Geometry Collections |
| for tg in multipoints: |
| mp = fromstr(tg.wkt) |
| for i in range(len(mp)): |
| # Creating a random point. |
| pnt = mp[i] |
| new = Point(random.randint(1, 100), random.randint(1, 100)) |
| # Testing the assignment |
| mp[i] = new |
| s = str(new) # what was used for the assignment is still accessible |
| self.assertEqual(mp[i], new) |
| self.assertEqual(mp[i].wkt, new.wkt) |
| self.assertNotEqual(pnt, mp[i]) |
| |
| # MultiPolygons involve much more memory management because each |
| # Polygon w/in the collection has its own rings. |
| for tg in multipolygons: |
| mpoly = fromstr(tg.wkt) |
| for i in xrange(len(mpoly)): |
| poly = mpoly[i] |
| old_poly = mpoly[i] |
| # Offsetting the each ring in the polygon by 500. |
| for j in xrange(len(poly)): |
| r = poly[j] |
| for k in xrange(len(r)): r[k] = (r[k][0] + 500., r[k][1] + 500.) |
| poly[j] = r |
| |
| self.assertNotEqual(mpoly[i], poly) |
| # Testing the assignment |
| mpoly[i] = poly |
| s = str(poly) # Still accessible |
| self.assertEqual(mpoly[i], poly) |
| self.assertNotEqual(mpoly[i], old_poly) |
| |
| # Extreme (!!) __setitem__ -- no longer works, have to detect |
| # in the first object that __setitem__ is called in the subsequent |
| # objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)? |
| #mpoly[0][0][0] = (3.14, 2.71) |
| #self.assertEqual((3.14, 2.71), mpoly[0][0][0]) |
| # Doing it more slowly.. |
| #self.assertEqual((3.14, 2.71), mpoly[0].shell[0]) |
| #del mpoly |
| |
| def test17_threed(self): |
| "Testing three-dimensional geometries." |
| # Testing a 3D Point |
| pnt = Point(2, 3, 8) |
| self.assertEqual((2.,3.,8.), pnt.coords) |
| self.assertRaises(TypeError, pnt.set_coords, (1.,2.)) |
| pnt.coords = (1.,2.,3.) |
| self.assertEqual((1.,2.,3.), pnt.coords) |
| |
| # Testing a 3D LineString |
| ls = LineString((2., 3., 8.), (50., 250., -117.)) |
| self.assertEqual(((2.,3.,8.), (50.,250.,-117.)), ls.tuple) |
| self.assertRaises(TypeError, ls.__setitem__, 0, (1.,2.)) |
| ls[0] = (1.,2.,3.) |
| self.assertEqual((1.,2.,3.), ls[0]) |
| |
| def test18_distance(self): |
| "Testing the distance() function." |
| # Distance to self should be 0. |
| pnt = Point(0, 0) |
| self.assertEqual(0.0, pnt.distance(Point(0, 0))) |
| |
| # Distance should be 1 |
| self.assertEqual(1.0, pnt.distance(Point(0, 1))) |
| |
| # Distance should be ~ sqrt(2) |
| self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11) |
| |
| # Distances are from the closest vertex in each geometry -- |
| # should be 3 (distance from (2, 2) to (5, 2)). |
| ls1 = LineString((0, 0), (1, 1), (2, 2)) |
| ls2 = LineString((5, 2), (6, 1), (7, 0)) |
| self.assertEqual(3, ls1.distance(ls2)) |
| |
| def test19_length(self): |
| "Testing the length property." |
| # Points have 0 length. |
| pnt = Point(0, 0) |
| self.assertEqual(0.0, pnt.length) |
| |
| # Should be ~ sqrt(2) |
| ls = LineString((0, 0), (1, 1)) |
| self.assertAlmostEqual(1.41421356237, ls.length, 11) |
| |
| # Should be circumfrence of Polygon |
| poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))) |
| self.assertEqual(4.0, poly.length) |
| |
| # Should be sum of each element's length in collection. |
| mpoly = MultiPolygon(poly.clone(), poly) |
| self.assertEqual(8.0, mpoly.length) |
| |
| def test20_emptyCollections(self): |
| "Testing empty geometries and collections." |
| gc1 = GeometryCollection([]) |
| gc2 = fromstr('GEOMETRYCOLLECTION EMPTY') |
| pnt = fromstr('POINT EMPTY') |
| ls = fromstr('LINESTRING EMPTY') |
| poly = fromstr('POLYGON EMPTY') |
| mls = fromstr('MULTILINESTRING EMPTY') |
| mpoly1 = fromstr('MULTIPOLYGON EMPTY') |
| mpoly2 = MultiPolygon(()) |
| |
| for g in [gc1, gc2, pnt, ls, poly, mls, mpoly1, mpoly2]: |
| self.assertEqual(True, g.empty) |
| |
| # Testing len() and num_geom. |
| if isinstance(g, Polygon): |
| self.assertEqual(1, len(g)) # Has one empty linear ring |
| self.assertEqual(1, g.num_geom) |
| self.assertEqual(0, len(g[0])) |
| elif isinstance(g, (Point, LineString)): |
| self.assertEqual(1, g.num_geom) |
| self.assertEqual(0, len(g)) |
| else: |
| self.assertEqual(0, g.num_geom) |
| self.assertEqual(0, len(g)) |
| |
| # Testing __getitem__ (doesn't work on Point or Polygon) |
| if isinstance(g, Point): |
| self.assertRaises(GEOSIndexError, g.get_x) |
| elif isinstance(g, Polygon): |
| lr = g.shell |
| self.assertEqual('LINEARRING EMPTY', lr.wkt) |
| self.assertEqual(0, len(lr)) |
| self.assertEqual(True, lr.empty) |
| self.assertRaises(GEOSIndexError, lr.__getitem__, 0) |
| else: |
| self.assertRaises(GEOSIndexError, g.__getitem__, 0) |
| |
| def test21_test_gdal(self): |
| "Testing `ogr` and `srs` properties." |
| if not HAS_GDAL: return |
| g1 = fromstr('POINT(5 23)') |
| self.assertEqual(True, isinstance(g1.ogr, OGRGeometry)) |
| self.assertEqual(g1.srs, None) |
| |
| g2 = fromstr('LINESTRING(0 0, 5 5, 23 23)', srid=4326) |
| self.assertEqual(True, isinstance(g2.ogr, OGRGeometry)) |
| self.assertEqual(True, isinstance(g2.srs, SpatialReference)) |
| self.assertEqual(g2.hex, g2.ogr.hex) |
| self.assertEqual('WGS 84', g2.srs.name) |
| |
| def test22_copy(self): |
| "Testing use with the Python `copy` module." |
| import copy |
| poly = GEOSGeometry('POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))') |
| cpy1 = copy.copy(poly) |
| cpy2 = copy.deepcopy(poly) |
| self.assertNotEqual(poly._ptr, cpy1._ptr) |
| self.assertNotEqual(poly._ptr, cpy2._ptr) |
| |
| def test23_transform(self): |
| "Testing `transform` method." |
| if not HAS_GDAL: return |
| orig = GEOSGeometry('POINT (-104.609 38.255)', 4326) |
| trans = GEOSGeometry('POINT (992385.4472045 481455.4944650)', 2774) |
| |
| # Using a srid, a SpatialReference object, and a CoordTransform object |
| # for transformations. |
| t1, t2, t3 = orig.clone(), orig.clone(), orig.clone() |
| t1.transform(trans.srid) |
| t2.transform(SpatialReference('EPSG:2774')) |
| ct = CoordTransform(SpatialReference('WGS84'), SpatialReference(2774)) |
| t3.transform(ct) |
| |
| # Testing use of the `clone` keyword. |
| k1 = orig.clone() |
| k2 = k1.transform(trans.srid, clone=True) |
| self.assertEqual(k1, orig) |
| self.assertNotEqual(k1, k2) |
| |
| prec = 3 |
| for p in (t1, t2, t3, k2): |
| self.assertAlmostEqual(trans.x, p.x, prec) |
| self.assertAlmostEqual(trans.y, p.y, prec) |
| |
| def test24_extent(self): |
| "Testing `extent` method." |
| # The xmin, ymin, xmax, ymax of the MultiPoint should be returned. |
| mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50)) |
| self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent) |
| pnt = Point(5.23, 17.8) |
| # Extent of points is just the point itself repeated. |
| self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent) |
| # Testing on the 'real world' Polygon. |
| poly = fromstr(polygons[3].wkt) |
| ring = poly.shell |
| x, y = ring.x, ring.y |
| xmin, ymin = min(x), min(y) |
| xmax, ymax = max(x), max(y) |
| self.assertEqual((xmin, ymin, xmax, ymax), poly.extent) |
| |
| def test25_pickle(self): |
| "Testing pickling and unpickling support." |
| # Using both pickle and cPickle -- just 'cause. |
| import pickle, cPickle |
| |
| # Creating a list of test geometries for pickling, |
| # and setting the SRID on some of them. |
| def get_geoms(lst, srid=None): |
| return [GEOSGeometry(tg.wkt, srid) for tg in lst] |
| tgeoms = get_geoms(points) |
| tgeoms.extend(get_geoms(multilinestrings, 4326)) |
| tgeoms.extend(get_geoms(polygons, 3084)) |
| tgeoms.extend(get_geoms(multipolygons, 900913)) |
| |
| # The SRID won't be exported in GEOS 3.0 release candidates. |
| no_srid = self.null_srid == -1 |
| for geom in tgeoms: |
| s1, s2 = cPickle.dumps(geom), pickle.dumps(geom) |
| g1, g2 = cPickle.loads(s1), pickle.loads(s2) |
| for tmpg in (g1, g2): |
| self.assertEqual(geom, tmpg) |
| if not no_srid: self.assertEqual(geom.srid, tmpg.srid) |
| |
| def suite(): |
| s = unittest.TestSuite() |
| s.addTest(unittest.makeSuite(GEOSTest)) |
| return s |
| |
| def run(verbosity=2): |
| unittest.TextTestRunner(verbosity=verbosity).run(suite()) |