blob: 24dc866786832fe7e8572b6152df49c0317f1d96 [file] [log] [blame]
/*****************************************************************
Time-stamp: <2008-10-29 10:41:19 banbara>
NAME
pl2am: Translating Prolog into WAM-based Intermediate Code
USAGE
# sicstus
?- [pl2am].
?- pl2am([File1, File2, [Op1,..,OpN]]).
PARAMETERS
File1 is an input prolog file name.
File2 is an output file name.
Op ::= ed | ac | ie | rc | idx | clo
ed : eliminate disjunctions
ac : arithmetic compilation
ie : inline expansion
rc : optimise recursive call
idx: switch_on_hash (2nd. level indexing)
clo: generate closure for meta predicates
DESCRIPTION
This program translates Prolog program into WAM-based intermediate codes.
Generated codes can be translated into Java program by using am2j.pl,
and then compiled and executed by usual java utilities
with the Prolog Cafe runtime system.
COPYRIGHT
pl2am (Translating Prolog into WAM-based Intermediate Code)
Copyright (C) 1997-2008 by
Mutsunori Banbara (banbara@kobe-u.ac.jp) and
Naoyuki Tamura (tamura@kobe-u.ac.jp)
SEE ALSO
http://kaminari.istc.kobe-u.ac.jp/PrologCafe/
*****************************************************************/
/*****************************************************************
WAM-BASED INTERMEDIATE INSTRUCTIONS
Put Instructions
================
put_var(X)
put_int(i, X)
put_float(f, X)
put_con(f/n, X)
put_con(c, X),
put_list(Xi, Xj, Xk)
put_str(Xi, Y, Xj)
put_str_args([Xi,..,Xn], Y)
put_clo(p:G, X)
put_cont(p:BinG, C)
put_cont(BinG, C)
Get Instructions
================
get_val(Xi, Xj)
get_int(i, Xi, Xj)
get_float(f, Xi, Xj)
get_con(c, Xi, Xj)
get_ground(g, Xi, Xj)
get_list(X)
get_str(f/n, Xi, Xj)
Unify Instructions
==================
unify_var(X)
unify_val(X)
unify_int(i, X)
unify_float(f, X)
unify_con(c, X)
unify_ground(g, X)
unify_void(i)
Choice Instructions
===================
try(Li, Lj)
retry(Li, Lj)
trust(L)
Indexing Instructions
=====================
switch_on_term(Lv, Li, Lf, Lc, Ls, Ll)
switch_on_hash(TAG, i, L, hashtable)
Control Instructions
====================
execute(p:BinG)
execute(BinG)
inline(G)
'$INSERT'(ListOfAtom)
Other Instructions
==================
(:- G)
comment(Message)
debug(Message)
info(Message)
begin_predicate(f/n)
end_predicate(f/n)
package_name(p)
import_package(p)
import_package(p, f/n)
main(f/n, public): [Instructions]
main(f/n, non-public): [Instructions]
L: [Instructions]
label(L)
deref(Ri, Rj)
set(Ri, Rj)
setB0
goto(L)
decl_term_vars([R1,...,Rn])
decl_pred_vars([R1,...,Rn])
new_hash(TAG, i)
put_hash(X, L, TAG)
static([Instructions])
Notation
********
X ::= a(i) | S
Y ::= y(i) | S
S ::= s(i) | si(i) | sf(i)
L ::= f/n | f/n+i | f/n+TAG | f/n+TAG+i | f/n+TAG+i+i
TAG ::= var | int | flo | con | str | lis | top | sub | nil
BinG ::= C | f(A1,..,An, C)
G ::= f(A1,..,An)
A ::= void | X
C ::= cont | p(N)
R ::= cont | econt | a(i) | arg(i) | ea(i)
*****************************************************************/
/*****************************************************************
Declarations
*****************************************************************/
:- op(1170, xfx, (:-)).
:- op(1170, xfx, (-->)).
:- op(1170, fx, (:-)).
:- op(1170, fx, (?-)).
:- op( 500, yfx, (#)).
:- op(1150, fx, (dynamic)).
:- op(1150, fx, (meta_predicate)).
:- op(1150, fx, (package)). % Prolog Cafe specific
:- op(1150, fx, (public)).
:- op(1150, fx, (import)). % Prolog Cafe specific
:- op(1150, fx, (mode)).
:- op(1150, fx, (multifile)).
:- op(1150, fx, (block)).
:- dynamic internal_clause/2.
:- dynamic internal_predicates/2.
:- dynamic dynamic_predicates/2.
:- dynamic meta_predicates/3.
:- dynamic package_name/1.
:- dynamic public_predicates/2.
:- dynamic import_package/2.
:- dynamic internal_declarations/1.
:- dynamic file_name/1.
:- dynamic dummy_clause_counter/1.
:- dynamic pl2am_flag/1.
:- dynamic fail_flag/0. % used for generating label(fail/0) or not
% :- module('jp.ac.kobe_u.cs.prolog.compiler.pl2am', [main/0,pl2am/1]).
package(_).
:- package 'jp.ac.kobe_u.cs.prolog.compiler.pl2am'.
:- public main/0, pl2am/1.
/*****************************************************************
Main
*****************************************************************/
main :-
read(X),
pl2am(X).
pl2am([PrologFile, AsmFile, Opts]) :-
read_in_program(PrologFile, Opts),
open(AsmFile, write, Out),
compile_all_predicates(Out),
close(Out).
pl2am(_).
/*****************************************************************
Read in Program
*****************************************************************/
read_in_program(File, Opts) :-
pl2am_preread(File, Opts),
open(File, read, In),
repeat,
read(In, X),
assert_clause(X),
X == end_of_file,
!,
close(In),
pl2am_postread.
%%% Pre-init
pl2am_preread(File, Opts) :-
retractall(internal_clause(_,_)),
retractall(internal_predicates(_,_)),
retractall(dynamic_predicates(_,_)),
retractall(meta_predicates(_,_,_)),
retractall(package_name(_)),
retractall(public_predicates(_,_)),
retractall(import_package(_,_)),
retractall(internal_declarations(_)),
retractall(file_name(_)),
retractall(dummy_clause_counter(_)),
retractall(pl2am_flag(_)),
retractall(fail_flag),
assert(file_name(File)),
assert(dummy_clause_counter(0)),
assert_compile_opts(Opts),
assert_default_decls.
assert_default_decls :-
builtin_meta_predicates(Pred, Arity, Mode),
assert(meta_predicates(Pred, Arity, Mode)),
fail.
assert_default_decls.
assert_compile_opts([]) :- !.
assert_compile_opts([O|Os]) :-
assert_copts(O),
assert_compile_opts(Os).
assert_copts(O) :-
clause(pl2am_flag(O), _),
!.
assert_copts(O) :-
copt_expr(O),
!,
assert(pl2am_flag(O)).
assert_copts(O) :-
pl2am_error([O,is,an,invalid,option,for,pl2am]),
fail.
copt_expr(ed).
copt_expr(ac).
copt_expr(ie).
copt_expr(rc).
copt_expr(rc(_,_)).
copt_expr(idx).
copt_expr(clo).
%%% Post-init
pl2am_postread :-
assert_import('jp.ac.kobe_u.cs.prolog.lang'),
assert_import('jp.ac.kobe_u.cs.prolog.builtin'),
assert_dummy_package,
assert_dummy_public.
assert_dummy_package :-
clause(package_name(_), _),
!.
assert_dummy_package :-
assert(package_name(user)).
assert_dummy_public :-
clause(public_predicates(_,_), _),
!.
assert_dummy_public :-
assert(public_predicates(_,_)).
%%% Assert Clauses
assert_clause(end_of_file) :- !.
assert_clause((:- dynamic G)) :- !,
conj_to_list(G, G1),
assert_dynamic_predicates(G1).
assert_clause((:- module(M, PList))) :- !,
assert_package(M),
assert_public_predicates(PList).
assert_clause((:- meta_predicate G)) :- !,
conj_to_list(G, G1),
assert_meta_predicates(G1).
assert_clause((:- package G)) :- !,
assert_package(G).
assert_clause((:- public G)) :- !,
conj_to_list(G, G1),
assert_public_predicates(G1).
assert_clause((:- import G)) :- !,
assert_import(G).
assert_clause((:- mode _G)) :- !,
pl2am_message(['*** WARNING',mode,declaration,is,not,supported,yet]).
assert_clause((:- multifile _G)) :- !,
pl2am_message(['*** WARNING',multifile,declaration,is,not,supported,yet]).
assert_clause((:- block _G)) :- !,
pl2am_message(['*** WARNING',block,declaration,is,not,supported,yet]).
assert_clause((:- G)) :- !,
call(G),
assert_declarations(G).
assert_clause(Clause) :-
preprocess(Clause, Cl),
assert_cls(Cl).
%%% Dynamic Declaration
assert_dynamic_predicates([]) :- !.
assert_dynamic_predicates([G|Gs]) :-
assert_dynamic(G),
assert_dynamic_predicates(Gs).
assert_dynamic(G) :-
\+ clause(package_name('jp.ac.kobe_u.cs.prolog.builtin'), _),
G = F/A,
functor(Head, F, A),
system_predicate(Head),
!,
pl2am_error([can,not,redefine,builtin,predicate,F/A]),
fail.
assert_dynamic(G) :-
G = F/A,
clause(dynamic_predicates(F,A), _), !.
assert_dynamic(G) :-
G = F/A,
assert(dynamic_predicates(F,A)), !.
assert_dynamic(G) :-
pl2am_error([G,is,an,invalid,dynamic,declaration]),
fail.
%%% Meta Predicates Declaration
assert_meta_predicates([]) :- !.
assert_meta_predicates([G|Gs]) :-
assert_meta(G),
assert_meta_predicates(Gs).
assert_meta(G) :-
functor(G, F, A),
clause(meta_predicates(F, A, _), _),
!.
assert_meta(G) :-
functor(G, F, A),
G =.. [_|M],
mode_expr(M),
!,
assert(meta_predicates(F, A, M)).
assert_meta(G) :-
pl2am_error([G,is,an,invalid,meta_predicate,declaration]),
fail.
%%% Package Declaration
assert_package(G) :-
clause(package_name(G1), _),
G \== G1,
!,
pl2am_error([duplicate,package,declarations,:,G1,and,G]),
fail.
assert_package(G) :-
atom(G),
!,
assert(package_name(G)),
retractall(import_package(G, _)).
assert_package(G) :-
pl2am_error([G,is,invalid,package,declaration]),
fail.
%%% Public Declaration
assert_public_predicates([]) :- !.
assert_public_predicates([G|Gs]) :-
assert_public(G),
assert_public_predicates(Gs).
assert_public(F/A) :-
predspec_expr(F/A),
clause(public_predicates(F, A), _),
!.
assert_public(F/A) :-
predspec_expr(F/A),
assert(public_predicates(F, A)).
%%% Import Declaration
assert_import(G) :-
atom(G),
!,
assert_impt(G, (*)).
assert_import(M:P) :-
atom(M),
(predspec_expr(P) ; atom(P)),
!,
assert_impt(M, P).
assert_import(G) :-
pl2am_error([G,is,invalid,import,declaration]),
fail.
assert_impt(M, _P) :-
clause(package_name(M), _),
!.
assert_impt(M, P) :-
clause(import_package(M, P0), _),
(P0 == (*) ; P0 == P),
!.
assert_impt(M, P) :-
assert(import_package(M, P)).
%%% Assert Declaration (:- G)
assert_declarations(G) :-
clause(internal_declarations(G), _),
!.
assert_declarations(G) :-
assert(internal_declarations(G)).
%%% Assert Cluase
assert_cls((Head :- Body)) :- !,
assert_predicate(Head),
assert(internal_clause(Head, Body)).
assert_cls(Head) :- !,
assert_predicate(Head),
assert(internal_clause(Head, true)).
assert_predicate(Head) :-
\+ clause(package_name('jp.ac.kobe_u.cs.prolog.builtin'), _),
system_predicate(Head),
!,
functor(Head, Functor, Arity),
pl2am_error([can,not,redefine,builtin,predicate,Functor/Arity]),
fail.
assert_predicate(Head) :-
functor(Head, Functor, Arity),
clause(internal_predicates(Functor, Arity), _),
!.
assert_predicate(Head) :-
functor(Head, Functor, Arity),
assert(internal_predicates(Functor, Arity)).
%%% Preprocess
preprocess(Cl0, Cl) :-
clause(pl2am_flag(ed), _),
!,
expand_term(Cl0, Cl1),
eliminate_disjunction(Cl1, Cl).
preprocess(Cl0, Cl) :-
expand_term(Cl0, Cl).
eliminate_disjunction(Cl0, Cl) :-
eliminate_disj(Cl0, Cl, DummyCls),
assert_dummy_clauses(DummyCls).
assert_dummy_clauses([]) :- !.
assert_dummy_clauses([C|Cs]) :-
assert_clause(C),
assert_dummy_clauses(Cs).
/*****************************************************************
Compile Prolog Program
*****************************************************************/
compile_all_predicates(Out) :- % output declarations (ex. op/3)
clause(internal_declarations(G), _),
writeq(Out, (:- G)), write(Out, '.'), nl(Out),
fail.
compile_all_predicates(_) :- % treat dynamic declaration
findall(Functor/Arity, dynamic_predicates(Functor, Arity), PredSpecs),
assert_init_clauses(PredSpecs),
fail.
compile_all_predicates(Out) :- % compile predicate
clause(internal_predicates(Functor, Arity), _),
compile_predicate(Functor, Arity, Instructions, []),
write_asm(Out, Instructions),
nl(Out),
fail.
compile_all_predicates(Out):- nl(Out).
write_asm(_, []) :- !.
write_asm(Out, [Instruction|Instructions]) :- !,
write_asm(Out, Instruction),
write_asm(Out, Instructions).
write_asm(Out, begin_predicate(FA)) :- !,
writeq(Out, begin_predicate(FA)), write(Out, '.'), nl(Out).
write_asm(Out, end_predicate(FA)) :- !,
writeq(Out, end_predicate(FA)), write(Out, '.'), nl(Out).
write_asm(Out, comment(Comment0)) :- !,
copy_term(Comment0, Comment),
numbervars(Comment, 0, _),
tab(Out, 8), writeq(Out, comment(Comment)), write(Out, '.'), nl(Out).
write_asm(Out, (Label: Instruction)) :- !,
writeq(Out, Label), write(Out, ' :'), nl(Out),
write_asm(Out, Instruction).
write_asm(Out, Instruction) :-
tab(Out, 8), writeq(Out, Instruction), write(Out, '.'), nl(Out).
/****************************************************************
Treat Dynamic Declaration
****************************************************************/
assert_init_clauses([]) :- !.
assert_init_clauses(PredSpecs) :-
collect_init_cls(PredSpecs, Cls),
assert_init_cls(Cls),
!.
collect_init_cls([], []) :- !.
collect_init_cls([F/A|FAs], [Cls|Cls1]) :-
clause(internal_predicates(F,A), _),
!,
functor(Head, F, A),
findall(assertz((Head :- Body)), internal_clause(Head, Body), Cls),
retractall(internal_predicates(F,A)),
retractall(internal_clause(Head, _)),
collect_init_cls(FAs, Cls1).
%collect_init_cls([FA|FAs], [hash_put(P,FA,[])|Cls]) :-
collect_init_cls([FA|FAs], ['$new_indexing_hash'(P,FA,_)|Cls]) :-
clause(package_name(P), _),
!,
collect_init_cls(FAs, Cls).
assert_init_cls([]) :- !.
assert_init_cls(Cls) :-
list_to_conj(Cls, Body),
assert_clause(('$init' :- Body)).
/****************************************************************
Compile Predicate
****************************************************************/
compile_predicate(Functor, Arity) -->
{functor(Head, Functor, Arity)},
{findall((Head :- Body), internal_clause(Head, Body), Clauses)},
[begin_predicate(Functor/Arity)],
generate_package,
generate_import,
generate_info(Functor, Arity),
compile_pred(Clauses, Functor/Arity),
[end_predicate(Functor/Arity)].
%%% Program Code
compile_pred([], _) --> [], !.
compile_pred([Clause], FA) --> !,
{check_modifier(FA, MF)}, % checks public or non-public
[main(FA, MF): []],
[PutGroundTerm], % generates put instructions of ground terms
[FA: []],
[comment(Clause)],
[setB0], % set B0 register for cut
[DeclLocalVars], % generates the declarations of local variables
{FA = _/A},
set_arguments(1, A, arg, a, set), % set arg(N) to a(N).
{GTI0 = [1,[],[]]}, % GTI0 = [SN,SAlloc,PutGroundTerm]
compile_clause(Clause, GTI0, GTI, LTI),
{GTI = [_,_,PutGroundTerm0], pl2am_rev(PutGroundTerm0, PutGroundTerm)},
{LTI = [XN,_,PN|_], generate_var_decl([1,1], [XN,PN], DeclLocalVars, [])}.
compile_pred(Clauses, FA) -->
{check_modifier(FA, MF)}, % checks public or non-public
[main(FA,MF): []],
[PutGroundTerm], % generates ground terms
[OPT1],
[PutLabel], % generates label declarations
[NewHash], % generates new_hash
[PutHash], % generates pub_hash
%
[FA: []],
{FA = Functor/Arity},
set_arguments(1, Arity, arg, ea, set), % set arg(N) to engine.areg(N)
[set(cont, econt)], % set cont to engine.cont
[OPT2],
[OPT3],
[setB0], % set B0 register for cut
generate_switch(Clauses, FA, GLI), % generates control and indexing instructions.
{GTI0 = [1,[],[]]}, % GTI0 = [SN,SAlloc,PutGroundTerm]
compile_pred2(Clauses, FA, 1, GTI0, GTI),
%
{GTI = [_,SAlloc,PutGroundTerm0], pl2am_rev(PutGroundTerm0, PutGroundTerm)},
{GLI = [PutLabel, Hash0]},
% replace the hash key with s(i), si(i), or sf(i)
{replace_hash_keys(Hash0, SAlloc, NewHash, PutHash0)},
{PutHash0 == [] -> PutHash = [] ; PutHash = static(PutHash0)},
% generate code for the recursize call optimization
{clause(pl2am_flag(rc(Functor,Arity)), _) ->
OPT1 = label(FA+top), OPT2 = goto(FA+top), OPT3 = FA+top: []
;
OPT1 = [], OPT2 = [], OPT3 = []
}.
compile_pred2([], _, _, GTI, GTI) --> !.
compile_pred2([Clause|Clauses], FA, N, GTI0, GTI) -->
[FA+N: []],
[comment(Clause)],
[DeclLocalVars], % generates the declarations of local variables
[decl_pred_vars([cont])],
{FA = _/Arity},
set_arguments(1, Arity, ea, a, set), % set engine.areg(N) to a(N).
[set(econt, cont)], % set engine.cont to cont
compile_clause(Clause, GTI0, GTI1, LTI),
{N1 is N + 1},
compile_pred2(Clauses, FA, N1, GTI1, GTI),
{LTI = [XN,_,PN|_], generate_var_decl([1,1], [XN,PN], DeclLocalVars, [])}.
%%% Control and Indexing instructions
generate_switch(Clauses, FA, [Label, Hash]) -->
% generates try, retry, trust, switch_on_term, and switch_on_hash
{generate_switch0(Clauses, FA, Instrs, [])},
% generates sub-labels for BP
generate_bp_label(Instrs, FA+sub, 1, Ls0, SWTs),
% generates fail label (fail_flag may be asserted by generate_switch0/4)
{(retract(fail_flag) -> Ls1 = [label(fail/0)|Ls0] ; Ls1 = Ls0)},
% generates labels for clauses
{length(Clauses, N)},
{generate_cl_label(FA, 1, N, Ls2)},
{pl2am_append(Ls1, Ls2, Label)},
% generates new_hash and put_hash instructions for switch_on_hash
{gen_hash(SWTs, Hash, [])}.
generate_switch0(Clauses, FA) -->
{get_indices(Clauses, FA, 1, Is)},
generate_switch1(Is, FA).
%%% 1st. Indexing
generate_switch1(Is, FA) -->
{FA = _/0},
!,
generate_tries(Is).
generate_switch1(Is, _) -->
{all_variable_indices(Is)},
!,
generate_tries(Is).
generate_switch1(Is, FA) -->
[switch_on_term(LV,LI,LF,LC,LS,LL)],
generate_sw(Is, FA, var, LV, [], PIs0),
generate_sw(Is, FA, int, LI, PIs0, PIs1),
generate_sw(Is, FA, flo, LF, PIs1, PIs2),
generate_sw(Is, FA, con, LC, PIs2, PIs3),
generate_sw(Is, FA, str, LS, PIs3, PIs4),
generate_sw(Is, FA, lis, LL, PIs4, _).
generate_sw(Is, FA, Tag, L, PIs0, PIs) -->
{select_indices(Is, Tag, Is1)},
generate_sw1(Is1, FA, Tag, L, PIs0, PIs).
%%% 2nd. Indexing
generate_sw1([], _, _, fail/0, PIs, PIs) --> !, {assert_fail}.
generate_sw1([I], _, _, L, PIs, PIs) --> !, {I = [L|_]}.
generate_sw1(Is, FA, Tag, L, PIs0, PIs) -->
{no_switch_on_hash(Is, Tag)},
!,
generate_sw2(Is, FA, Tag, L, PIs0, PIs).
generate_sw1(Is, FA, Tag, FA+Tag, PIs0, PIs) -->
generate_sw(Is, FA, nil, L, PIs0, PIs),
{count_unique_hash(Is, Size, Keys)},
[FA+Tag: switch_on_hash(Tag, Size, L, HT)],
{generate_hash_table(Keys, Is, LIs)},
generate_hash_tries(LIs, FA+Tag, 0, HT).
no_switch_on_hash(Is, Tag) :-
clause(pl2am_flag(idx), _),
!,
(Tag = var ; Tag = lis ; Tag = nil ; count_unique_hash(Is, C, _), C < 2).
no_switch_on_hash(_, _).
generate_sw2(Is, _, _, L, PIs, PIs) -->
{pl2am_member((L,Is), PIs)},
!.
generate_sw2(Is, FA, Tag, FA+Tag, PIs0, [(FA+Tag,Is)|PIs0]) -->
[FA+Tag: []],
generate_tries(Is).
generate_hash_tries([], _, _, []) --> !.
generate_hash_tries([K:[]|LIs], L0, N, [K:fail/0|Ls]) --> !,
{assert_fail},
generate_hash_tries(LIs, L0, N, Ls).
generate_hash_tries([K:[I]|LIs], L0, N, [K:L|Ls]) --> !,
{I = [L|_]},
generate_hash_tries(LIs, L0, N, Ls).
generate_hash_tries([K:Is|LIs], L0, N, [K:L0+N|Ls]) -->
[L0+N: []],
generate_tries(Is),
{N1 is N + 1},
generate_hash_tries(LIs, L0, N1, Ls).
generate_hash_table([], _, []) :- !.
generate_hash_table([K|Ks], Is0, [K:Is|LIs]) :-
select_hash(Is0, K, Is),
generate_hash_table(Ks, Is0, LIs).
select_hash([], _, []).
select_hash([I|Is0], K, [I|Is]) :-
I = [_,_,Tag,Hash],
(Tag = var ; K = Hash),
!,
select_hash(Is0, K, Is).
select_hash([_|Is0], K, Is) :-
select_hash(Is0, K, Is).
%%% Choice Point (try, retry, trust)
generate_tries([I|Is]) -->
{I = [L|_]},
[try(L)],
generate_tries1(Is).
generate_tries1([I]) --> !,
{I = [L|_]},
[trust(L)].
generate_tries1([I|Is]) -->
{I = [L|_]},
[retry(L)],
generate_tries1(Is).
get_indices([], _, _, []).
get_indices([_|Clauses], FA, N, [[FA+N]|Is]) :-
FA = _/0,
!,
N1 is N + 1,
get_indices(Clauses, FA, N1, Is).
get_indices([Clause|Clauses], FA, N, [[FA+N,A1,Tag,Hash]|Is]) :-
Clause = (Head :- _),
arg(1, Head, A1),
get_hash(A1, Tag, Hash),
N1 is N + 1,
get_indices(Clauses, FA, N1, Is).
get_hash(X, var, 0) :- var(X), !.
get_hash(X, int, X) :- integer(X), !.
get_hash(X, flo, X) :- float(X), !.
get_hash(X, con, X) :- atom(X), !.
get_hash(X, lis, '.'/2) :- X = [_|_], !.
get_hash(X, str, F/A) :- functor(X, F, A), !.
all_variable_indices([]).
all_variable_indices([[_,_,var,_]|Is]) :-
all_variable_indices(Is).
count_unique_hash([], 0, []).
count_unique_hash([I|Is], C, K) :-
count_unique_hash(Is, C0, K0),
I = [_,_,Tag,Hash],
((Tag = var ; pl2am_member([_,_,_,Hash], Is)) ->
C = C0, K = K0
;
C is C0 + 1, K = [Hash|K0]
).
select_indices([], _, []).
select_indices([I|Is0], Tag, [I|Is]) :-
I = [_,_,T|_],
(Tag = var ; Tag = T ; T = var),
!,
select_indices(Is0, Tag, Is).
select_indices([_|Is0], Tag, Is) :-
select_indices(Is0, Tag, Is).
%%% Assert Fail Flag
assert_fail:- clause(fail_flag, _), !.
assert_fail:- assert(fail_flag).
%%% Generate Labels for Backtrack Point
generate_bp_label([], _, _, [], []) --> !.
generate_bp_label([X|Xs], CL, N, Ls, [X|Hs]) -->
{X = switch_on_hash(_,_,_,_)},
!,
[X],
generate_bp_label(Xs, CL, N, Ls, Hs).
generate_bp_label([try(L)|Xs], CL, N, [label(CL+N)|Ls], Hs) --> !,
[try(L, CL+N)],
[CL+N: []],
{N1 is N+1},
generate_bp_label(Xs, CL, N1, Ls, Hs).
generate_bp_label([retry(L)|Xs], CL, N, [label(CL+N)|Ls], Hs) --> !,
[retry(L, CL+N)],
[CL+N: []],
{N1 is N+1},
generate_bp_label(Xs, CL, N1, Ls, Hs).
generate_bp_label([(L:X)|Xs], _, _, [label(L)|Ls], Hs) --> !,
[L: []],
generate_bp_label([X|Xs], L, 1, Ls, Hs).
generate_bp_label([X|Xs], CL, N, Ls, Hs) -->
[X],
generate_bp_label(Xs, CL, N, Ls, Hs).
generate_cl_label(_, I, N, []) :-
I > N,
!.
generate_cl_label(FA, I, N, [label(FA+I)|Ls]) :-
I1 is I+1,
generate_cl_label(FA, I1, N, Ls).
%%% Generate Hash instructions for switch_on_hash
gen_hash([]) --> !.
gen_hash([switch_on_hash(T,S,_,H)|Xs]) --> !,
[new_hash(T,S)],
gen_put_hash(H, T),
gen_hash(Xs).
gen_put_hash([], _) --> !.
gen_put_hash([K:V|Xs], T) -->
[put_hash(K, V, T)],
gen_put_hash(Xs, T).
replace_hash_keys([], _, [], []) :- !.
replace_hash_keys([put_hash(K,L,H)|Xs], SA, NHs, [put_hash(X,L,H)|PHs]) :- !,
replace_key(K, SA, X),
replace_hash_keys(Xs, SA, NHs, PHs).
replace_hash_keys([X|Xs], SA, [X|NHs], PHs) :-
replace_hash_keys(Xs, SA, NHs, PHs).
replace_key(K, Alloc, X) :-
integer(K),
allocated(Alloc, K:int, [X,yes]),
!.
replace_key(K, Alloc, X) :-
float(K),
allocated(Alloc, K:flo, [X,yes]),
!.
replace_key(K, Alloc, X) :-
atom(K),
allocated(Alloc, K:con, [X,yes]),
!.
replace_key(K, Alloc, X) :-
nonvar(K),
K = F/A,
atom(F),
integer(A),
allocated(Alloc, K:con, [X,yes]),
!.
replace_key(K, _, _) :-
pl2am_error([replacement,of,hash,key,K,failed]),
fail.
%%% Package and Import Declarations
generate_package -->
{clause(package_name(P), _)},
[package_name(P)].
generate_import -->
{findall((P,C), import_package(P, C), X)},
gen_import(X).
gen_import([]) --> !.
gen_import([(P,'*')|Xs]) --> !,
[import_package(P)],
gen_import(Xs).
gen_import([(P,C)|Xs]) -->
[import_package(P, C)],
gen_import(Xs).
%%% Information
generate_info(Functor, Arity) -->
{clause(file_name(File), _)},
[info([Functor/Arity, File])].
%%% Check the Modifier of Predicate F/A.
check_modifier('$init'/0, public) :- !.
check_modifier(F/A, public) :-
clause(public_predicates(F, A), _),
!.
check_modifier(_, non-public).
%%% generate a list of registers with given range.
range_reg(I, N, _, []) :- I > N, !.
range_reg(I, N, A, [R|Rs]) :-
I =< N,
I1 is I+1,
R =.. [A, I],
range_reg(I1, N, A, Rs).
%%% generate set instructions
gen_set([], []) --> !.
gen_set([X|Xs], [Y|Ys]) --> [set(X, Y)], gen_set(Xs, Ys).
%%% generate deref instructions
gen_deref([], []) --> !.
gen_deref([X|Xs], [Y|Ys]) --> [deref(X, Y)], gen_deref(Xs, Ys).
%%% generate set and deref instructions
set_arguments(SN, EN, R1, R2, Flag) -->
{range_reg(SN, EN, R1, L1)},
{range_reg(SN, EN, R2, L2)},
gen_set_arg(Flag, L1, L2).
gen_set_arg(set, L1, L2) --> gen_set(L1, L2).
gen_set_arg(deref, L1, L2) --> gen_deref(L1, L2).
%%% generate decl_var instructions
generate_var_decl([X0,P0], [XN,PN]) -->
{X1 is XN-1, P1 is PN-1},
{range_reg(X0, X1, a, XL)},
{range_reg(P0, P1, p, PL)},
gen_decl_term_vars(XL),
gen_decl_pred_vars(PL).
gen_decl_term_vars([]) --> !.
gen_decl_term_vars(XL) --> [decl_term_vars(XL)].
gen_decl_pred_vars([]) --> !.
gen_decl_pred_vars(PL) --> [decl_pred_vars(PL)].
/****************************************************************
Compile Clause
****************************************************************/
compile_clause((Head :- Body), GTI0, GTI, LTI) -->
{pretreat_body(Body, Goals0)}, % cut, rename, compile aith exp.
{localize_meta(Goals0, Goals)}, % add package name for meta predicates
{precompile(Head, Goals, Instrs)}, % generate get, put, put_clo, put_cont, inline
[comment((Head :- Goals))], % output precompiled clause
compile_chunks(Instrs, GTI0, GTI, LTI),
!.
compile_clause(Clause, _, _, _) -->
{pl2am_error([compilation,of,Clause,failed])},
{fail}.
%%%%%%%%%% Pretreat Body and Compile Arithmetic Expressions
pretreat_body(Body, Goals) :-
pretreat_body0(Body, Cut, Goals0, []),
pretreat_cut(Cut, Goals0, Goals).
pretreat_cut(Cut, Gs, Gs) :- var(Cut), !.
pretreat_cut('$cut'(Level), ['$cut'(Level)|Gs], ['$neck_cut'|Gs]) :- !.
pretreat_cut('$cut'(Level), Gs, ['$get_level'(Level)|Gs]).
pretreat_body0(G, _) --> {var(G)}, !, [call(G)].
pretreat_body0(!, Cut) --> !, {Cut = '$cut'(Level)}, ['$cut'(Level)].
pretreat_body0(otherwise, _) --> !.
pretreat_body0(true, _) --> !.
pretreat_body0(fail, _) --> !, [fail].
pretreat_body0(false, _) --> !, [fail].
pretreat_body0(halt, _) --> !, [halt].
pretreat_body0(abort, _) --> !, [abort].
pretreat_body0((G1,G2), Cut) --> !, pretreat_body0(G1, Cut), pretreat_body0(G2, Cut).
pretreat_body0(G, _) --> pretreat_builtin(G), !.
pretreat_body0(G, _) --> {functor(G, F, A), clause(dynamic_predicates(F, A), _)}, !, [call(G)].
pretreat_body0(G, _) --> [G].
%%% rename builtins
pretreat_builtin(X = Y) --> !, ['$unify'(X, Y)].
pretreat_builtin(X \= Y) --> !, ['$not_unifiable'(X, Y)].
pretreat_builtin(X == Y) --> !, ['$equality_of_term'(X, Y)].
pretreat_builtin(X \== Y) --> !, ['$inequality_of_term'(X, Y)].
pretreat_builtin(?=(X, Y)) --> !, ['$identical_or_cannot_unify'(X, Y)].
pretreat_builtin(X @< Y) --> !, ['$before'(X, Y)].
pretreat_builtin(X @> Y) --> !, ['$after'(X, Y)].
pretreat_builtin(X @=< Y) --> !, ['$not_after'(X, Y)].
pretreat_builtin(X @>= Y) --> !, ['$not_before'(X, Y)].
pretreat_builtin(compare(Op,X,Y)) --> {Op == (=)}, !, ['$equality_of_term'(X, Y)].
pretreat_builtin(compare(Op,X,Y)) --> {Op == (<)}, !, ['$before'(X, Y)].
pretreat_builtin(compare(Op,X,Y)) --> {Op == (>)}, !, ['$after'(X, Y)].
pretreat_builtin(X =.. Y) --> !, ['$univ'(X, Y)].
pretreat_builtin(X =:= Y) --> !, pretreat_is(U, X), pretreat_is(V, Y), ['$arith_equal'(U, V)].
pretreat_builtin(X =\= Y) --> !, pretreat_is(U, X), pretreat_is(V, Y), ['$arith_not_equal'(U, V)].
pretreat_builtin(X > Y) --> !, pretreat_is(U, X), pretreat_is(V, Y), ['$greater_than'(U, V)].
pretreat_builtin(X >= Y) --> !, pretreat_is(U, X), pretreat_is(V, Y), ['$greater_or_equal'(U, V)].
pretreat_builtin(X < Y) --> !, pretreat_is(U, X), pretreat_is(V, Y), ['$less_than'(U, V)].
pretreat_builtin(X =< Y) --> !, pretreat_is(U, X), pretreat_is(V, Y), ['$less_or_equal'(U, V)].
pretreat_builtin(Z is X) --> !, pretreat_is0(Z, X).
pretreat_is(Z, X) --> {var(X)}, !, {X = Z}.
pretreat_is(Z, X) --> pretreat_is0(Z, X).
pretreat_is0(Z, X) --> {clause(pl2am_flag(ac), _)}, !, precompile_is(X, Z).
pretreat_is0(Z, X) --> [is(Z, X)].
%%% compile aithmetic expressions
precompile_is(X, A) --> {var(X)}, !, [is(A, X)].
precompile_is(X, A) --> {number(X)}, !, {X = A}.
precompile_is(X, A) --> {builtin_arith_constant(X)}, !, {X = A}.
precompile_is(+(X), A) --> !, precomp_is(X, A).
precompile_is(-(X), A) --> !, precompile_is(-1*X, A).
precompile_is(X+Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$plus'(U, V, A)].
precompile_is(X-Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$minus'(U, V, A)].
precompile_is(X*Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$multi'(U, V, A)].
precompile_is(X/Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$float_quotient'(U, V, A)].
precompile_is(X//Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$int_quotient'(U, V, A)].
precompile_is(X mod Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$mod'(U, V, A)].
precompile_is(X rem Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$mod'(U, V, A)].
precompile_is(X/\Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$bitwise_conj'(U, V, A)].
precompile_is(X\/Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$bitwise_disj'(U, V, A)].
precompile_is(X#Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$bitwise_exclusive_or'(U, V, A)].
precompile_is(\(X), A) --> !, precomp_is(X, U), ['$bitwise_neg'(U, A)].
precompile_is(X<<Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$shift_left'(U, V, A)].
precompile_is(X>>Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$shift_right'(U, V, A)].
precompile_is([X], A) --> !, precomp_is(X, A).
precompile_is(abs(X), A) --> !, precomp_is(X, U), ['$abs'(U, A)].
precompile_is(min(X,Y), A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$min'(U, V, A)].
precompile_is(max(X,Y), A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$max'(U, V, A)].
precompile_is(round(X), A) --> !, precomp_is(X, U), ['$round'(U, A)].
precompile_is(floor(X), A) --> !, precomp_is(X, U), ['$floor'(U, A)].
precompile_is(ceiling(X), A) --> !, precomp_is(X, U), ['$ceil'(U, A)].
precompile_is(sin(X), A) --> !, precomp_is(X, U), ['$sin'(U, A)].
precompile_is(cos(X), A) --> !, precomp_is(X, U), ['$cos'(U, A)].
precompile_is(tan(X), A) --> !, precomp_is(X, U), ['$tan'(U, A)].
precompile_is(asin(X), A) --> !, precomp_is(X, U), ['$asin'(U, A)].
precompile_is(acos(X), A) --> !, precomp_is(X, U), ['$acos'(U, A)].
precompile_is(atan(X), A) --> !, precomp_is(X, U), ['$atan'(U, A)].
precompile_is(sqrt(X), A) --> !, precomp_is(X, U), ['$sqrt'(U, A)].
precompile_is(log(X), A) --> !, precomp_is(X, U), ['$log'(U, A)].
precompile_is(exp(X), A) --> !, precomp_is(X, U), ['$exp'(U, A)].
precompile_is(X**Y, A) --> !, precomp_is(X, U), precomp_is(Y, V), ['$pow'(U, V, A)].
precompile_is(degrees(X), A) --> !, precomp_is(X, U), ['$degrees'(U, A)].
precompile_is(radians(X), A) --> !, precomp_is(X, U), ['$radians'(U, A)].
precompile_is(rint(X), A) --> !, precomp_is(X, U), ['$rint'(U, A)].
precompile_is(float(X), A) --> !, precomp_is(X, U), ['$float'(U, A)].
precompile_is(float_integer_part(X), A) --> !, precomp_is(X, U), ['$float_integer_part'(U, A)].
precompile_is(float_fractional_part(X), A) --> !, precomp_is(X, U), ['$float_fractional_part'(U, A)].
precompile_is(truncate(X),A) --> !, precomp_is(X, U), ['$truncate'(U, A)].
precompile_is(sign(X), A) --> !, precomp_is(X, U), ['$sign'(U, A)].
precompile_is(X, _) -->
{pl2am_error([unknown,arithemetic,expression,X])},
{fail}.
precomp_is(X, A) --> {var(X)}, {var(A)}, !, {X = A}.
precomp_is(X, A) --> precompile_is(X, A).
%%%%%%%%%% Add Pacakge (module) name to meta predicates
localize_meta(G0, G) :-
clause(package_name(P), _),
localize_meta(G0, P, G),
!.
localize_meta([], _, []) :- !.
localize_meta([G|Gs], P, [G1|Gs1]) :-
localize_meta_goal(G, P, X),
(X = P:Y -> G1 = Y ; G1 = X),
localize_meta(Gs, P, Gs1).
localize_meta_goal(G, P, G1) :- var(G), !,
localize_meta_goal(call(G), P, G1).
localize_meta_goal(P:G, _, G1) :- !,
localize_meta_goal(G, P, G1).
localize_meta_goal((X,Y), P, (X1,Y1)) :- !,
localize_meta_goal(X, P, X1),
localize_meta_goal(Y, P, Y1).
localize_meta_goal((X->Y), P, (X1->Y1)) :- !,
localize_meta_goal(X, P, X1),
localize_meta_goal(Y, P, Y1).
localize_meta_goal((X;Y), P, (X1;Y1)) :- !,
localize_meta_goal(X, P, X1),
localize_meta_goal(Y, P, Y1).
localize_meta_goal(G, P, G1) :-
functor(G, F, A),
(clause(meta_predicates(F, A, M), _) ; builtin_local_predicates(F, A, M)),
!,
G =.. [F|As],
localize_meta_args(M, As, P, As1),
G1 =.. [F|As1].
localize_meta_goal(G, P, call(P:G)) :- var(P), !.
localize_meta_goal(G, _, G) :- system_predicate(G), !.
localize_meta_goal(G, P, P:G).
localize_meta_args([], [], _, []) :- !.
localize_meta_args([:|Ms], [A|As], P, [P:A|As1]) :-
(var(A) ; A \= _:_),
!,
localize_meta_args(Ms, As, P, As1).
localize_meta_args([_|Ms], [A|As], P, [A|As1]) :-
localize_meta_args(Ms, As, P, As1).
%%%%%%%%%% Precompile Clause and Optimize Recursive Call
precompile(Head, Goals, Instrs) :-
precompile_head(Head, Instrs0, Bs),
precompile_body(Goals, Bs, []),
optimize_recursive_call(Head, Instrs0, Instrs).
%%% Precompile head (generates get instructions)
precompile_head(Head) -->
{Head =.. [_|Args]},
precomp_head(Args, 1).
precomp_head([], _) --> !.
precomp_head([A|As], I) -->
[get(A, a(I))],
{I1 is I + 1},
precomp_head(As, I1).
%%% Precompile body
%%% (generates put, put_clo, put_cont, and inline instructions)
precompile_body(Goals) -->
{clause(pl2am_flag(ie), _)},
!,
{pickup_inline_goals(Goals, IGs, Gs)},
precomp_inline(IGs, Gs).
precompile_body(Goals) -->
precomp_body(Goals).
precomp_body([]) --> !, [execute(cont)].
precomp_body(['$INSERT_AM'(Code)|_]) --> !,
{pl2am_error([invalid,instruction,'$INSERT_AM'(Code)])},
{fail}.
precomp_body(['$INSERT'(Code)|_]) --> !,
{pl2am_error([invalid,instruction,'$INSERT'(Code)])},
{fail}.
precomp_body([M:G|Cont]) --> !,
binarize_body(G, Cont, G1),
[execute(M:G1)].
precomp_body([G|Cont]) -->
binarize_body(G, Cont, G1),
[execute(G1)].
/*---------------------------------------------------------------
Binarization technique was developed by P.Tarau and M.Boyer,
please see:
* "Elementary Logic Programs"
P.Tarau and M.Boyer
Programming Language Implementation and Logic Programming,
pp.159--173, LNCS 456, Springer Verlag, 1990
----------------------------------------------------------------*/
binarize_body(G, Cont, G1) -->
{G =.. [F|Args]},
{functor(G, F, A)},
precomp_call(Args, Us, F, A),
%precomp_call(Args, Us), % for no closure
precomp_cont(Cont, V),
{pl2am_append(Us, [V], Ws)},
{G1 =.. [F|Ws]}.
precomp_call([], []) --> !.
precomp_call([A|As], [U|Us]) -->
[put(A, U)],
precomp_call(As, Us).
precomp_cont([], cont) --> !.
precomp_cont([M:G|Cont], V) --> !,
binarize_body(G, Cont, G1),
[put_cont(M:G1, V)].
precomp_cont([G|Cont], V) -->
binarize_body(G, Cont, G1),
[put_cont(G1, V)].
precomp_inline([], Gs1) --> !, precomp_body(Gs1).
precomp_inline([fail|_], _) --> !, [inline(fail)].
precomp_inline(['$INSERT_AM'(Code)|Gs], Gs1) --> !,
[Code], precomp_inline(Gs, Gs1).
precomp_inline(['$INSERT'(Code)|Gs], Gs1) --> !,
['$INSERT'(Code)], precomp_inline(Gs, Gs1).
precomp_inline([G|Gs], Gs1) -->
{G =.. [F|Args]},
{functor(G, F, A)},
precomp_call(Args, Us, F, A),
%precomp_call(Args, Us),
{G1 =.. [F|Us]},
[inline(G1)],
precomp_inline(Gs, Gs1).
pickup_inline_goals([], [], []) :- !.
pickup_inline_goals([G|Gs], [G|IGs], BGs) :-
builtin_inline_predicates(G),
!,
pickup_inline_goals(Gs, IGs, BGs).
pickup_inline_goals(Gs, [], Gs).
%%% Generate Closure
precomp_call(As, Us, Functor, Arity) -->
{clause(pl2am_flag(clo), _)},
{clause(meta_predicates(Functor, Arity, Mode), _)},
!,
{clause(package_name(P), _)},
precomp_closure(Mode, As, P, Us).
precomp_call(As, Us, _, _) --> precomp_call(As, Us).
precomp_closure([], [], _, []) --> !.
precomp_closure([:|Ms], [A|As], P, [U|Us]) -->
{get_closure(A, P, C)},
!,
[put_clo(C, U)],
precomp_closure(Ms, As, P, Us).
precomp_closure([_|Ms], [A|As], P, [U|Us]) -->
[put(A, U)],
precomp_closure(Ms, As, P, Us).
get_closure(G, _, _) :- var(G), !, fail.
get_closure(_, P, _) :- var(P), !, fail.
get_closure(P:G, _, Clo) :- !, get_closure(G, P, Clo).
get_closure(G, P, P:G) :- % ???
atom(P),
callable(G),
functor(G, F, A),
\+ clause(dynamic_predicates(F,A), _),
!.
%%% Optimize Recursive Call
optimize_recursive_call(Head, Instrs0, Instrs) :-
clause(pl2am_flag(rc), _),
!,
optimize_rc(Instrs0, Head, Instrs, []).
optimize_recursive_call(_, Instrs, Instrs).
optimize_rc([], _) --> !.
optimize_rc([execute(Goal)|Xs], Head) -->
{functor(Head, F, A)},
{functor(Goal, F, A1)},
{A+1 =:= A1},
!,
{assert_copts(rc(F, A))},
{Goal =.. [F|Args]},
{range_reg(1, A, ea, Rs0)},
{pl2am_append(Rs0, [econt], Rs)},
gen_set(Args, Rs),
[goto(F/A+top)],
optimize_rc(Xs, Head).
optimize_rc([X|Xs], Head) -->
[X],
optimize_rc(Xs, Head).
%%%%%%%%%% Compile Clause
compile_chunks(Chunk, GTI0, GTI, LTI) -->
{alloc_voids(Chunk, [], Alloc)}, % check void variables
compile_chunk(Chunk, Alloc, GTI0, GTI, LTI).
compile_chunk([], _, GTI, GTI, []) --> !.
compile_chunk(Chunk, Alloc, GTI0, GTI, LTI) -->
{free_x_reg(Chunk, 1, XN), YN = 1, PN = 1},
{LTI0 = [XN, YN, PN, Alloc]},
comp_chunk(Chunk, LTI0, LTI, GTI0, GTI).
comp_chunk([], LTI, LTI, GTI, GTI) --> !.
comp_chunk([(L:[])|Cs], LTI0, LTI, GTI0, GTI) --> !,
[L:[]],
comp_chunk(Cs, LTI0, LTI, GTI0, GTI).
comp_chunk([(L:C)|Cs], LTI0, LTI, GTI0, GTI) --> !,
[L:[]],
comp_chunk([C|Cs], LTI0, LTI, GTI0, GTI).
comp_chunk([C|Cs], LTI0, LTI, GTI0, GTI) --> !,
comp_instr(C, LTI0, LTI1, GTI0, GTI1),
comp_chunk(Cs, LTI1, LTI, GTI1, GTI).
%%% finds an available number A-register
free_x_reg([], XN, XN).
free_x_reg([get(_,V)|Cs], XN0, XN) :- nonvar(V), V = a(N), !,
XN1 is max(N+1, XN0),
free_x_reg(Cs, XN1, XN).
free_x_reg([put(_,V)|Cs], XN0, XN) :- nonvar(V), V = a(N), !,
XN1 is max(N+1, XN0),
free_x_reg(Cs, XN1, XN).
free_x_reg([_|Cs], XN0, XN) :-
free_x_reg(Cs, XN0, XN).
%%% finds void variables and allocates them in Alloc.
alloc_voids(Chunks, Alloc0, Alloc) :-
variables(Chunks, Vars),
alloc_voids1(Vars, Chunks, Alloc0, Alloc).
alloc_voids1([], _, Alloc, Alloc).
alloc_voids1([V|Vars], Chunks, Alloc0, Alloc) :-
count_variable(V, Chunks, 1),
!,
Alloc1 = [[V,void,_Seen]|Alloc0],
alloc_voids1(Vars, Chunks, Alloc1, Alloc).
alloc_voids1([_|Vars], Chunks, Alloc0, Alloc) :-
alloc_voids1(Vars, Chunks, Alloc0, Alloc).
%%%%%%%%%% Compile Precompiled Instructions: get, put, put_clo, and put_cont
/*
comp_instr(+Instr, +LTI0, ?LTI, +GTI0, ?GTI)
Instr : Intermediate instruction
LTI : [XN, YN, PN, Alloc]
XN : The register a(XN) is available for "Term".
YN : The register y(YN) is available for "Term[]".
PN : The register p(PN) is available for "Predicate".
Alloc : [[VarTerm, Register, Seen],...]
GTI : [SN, SAlloc, SInstrs]
SN : The registers s(SN), si(SN), or sf(SN) are available for static "Term".
SAlloc : [[NonVarTerm:Type, Register, Seen],...]
SInstrs : list of instructions for static terms.
Seen : Unbound variable | yes | void
Type : int | flo | con | str | lis | arr
*/
comp_instr(get(X, A), LTI0, LTI, GTI0, GTI) --> !,
gen_get(X, A, LTI0, LTI, GTI0, GTI).
comp_instr(put(X, V), LTI0, LTI, GTI0, GTI) --> !,
gen_put(X, V, LTI0, LTI, GTI0, GTI).
comp_instr(put_clo(X, V), LTI0, LTI, GTI0, GTI) --> !,
gen_put_clo(X, V, LTI0, LTI, GTI0, GTI).
comp_instr(put_cont(X, V), LTI0, LTI, GTI0, GTI) --> !,
gen_put_cont(X, V, LTI0, LTI, GTI0, GTI).
comp_instr(Instr, LTI, LTI, GTI, GTI) -->
[Instr].
%%%%%%%%%% put instructions
gen_put(_, A, _, _, _, _) --> {nonvar(A)}, !,
{pl2am_error([A,should,be,an,unbound,variable])},
{fail}.
gen_put(X, A, LTI0, LTI, GTI, GTI) --> {var(X)}, !,
{assign_reg(X, R, Seen, LTI0, LTI)},
gen_put_var(R, Seen, A).
gen_put(X, A, LTI, LTI, GTI0, GTI) --> {integer(X)}, !,
{assign_sreg(X:int, R, Seen, GTI0, GTI1)},
gen_put_int(X, R, Seen, A, GTI1, GTI).
gen_put(X, A, LTI, LTI, GTI0, GTI) --> {float(X)}, !,
{assign_sreg(X:flo, R, Seen, GTI0, GTI1)},
gen_put_float(X, R, Seen, A, GTI1, GTI).
gen_put(X, A, LTI, LTI, GTI0, GTI) --> {atom(X)}, !,
{assign_sreg(X:con, R, Seen, GTI0, GTI1)},
gen_put_con(X, R, Seen, A, GTI1, GTI).
gen_put(X, A, LTI0, LTI, GTI0, GTI) -->
{ground(X), X = [X1|X2]},
!,
gen_put_args([X1,X2], [R1,R2], LTI0, LTI, GTI0, GTI1),
{assign_sreg(X:lis, R, Seen, GTI1, GTI2)},
gen_put_list([R1,R2], R, Seen, A, GTI2, GTI).
gen_put(X, A, LTI0, LTI, GTI0, GTI) -->
{ground(X), X =..[_|Args], functor(X,F,N)},
!,
{assign_sreg(F/N:con, R0, Seen0, GTI0, GTI1)},
gen_put_con(F/N, R0, Seen0, _, GTI1, GTI2),
gen_put_args(Args, Regs, LTI0, LTI, GTI2, GTI3),
{assign_sreg(Args:arr, R1, Seen1, GTI3, GTI4)},
gen_put_str_args(Regs, R1, Seen1, _, GTI4, GTI5),
{assign_sreg(X:str, R, Seen, GTI5, GTI6)},
gen_put_str([R0,R1], R, Seen, A, GTI6, GTI).
gen_put(X, A, LTI0, LTI, GTI0, GTI) -->
{X = [X1|X2]},
!,
gen_put_args([X1,X2], [R1,R2], LTI0, LTI1, GTI0, GTI),
{assign_reg(_, R, Seen, LTI1, LTI)},
{Seen = yes, R = A},
[put_list(R1, R2, R)].
gen_put(X, A, LTI0, LTI, GTI0, GTI) -->
{X =..[_|Args], functor(X,F,N)},
!,
{assign_sreg(F/N:con, R0, Seen0, GTI0, GTI1)},
gen_put_con(F/N, R0, Seen0, _, GTI1, GTI2),
gen_put_args(Args, Regs, LTI0, LTI1, GTI2, GTI),
{inc_YN(R1, LTI1, LTI2)},
{assign_reg(_, R, Seen, LTI2, LTI)},
{Seen = yes, R = A},
[put_str_args(Regs, R1)],
[put_str(R0, R1, R)].
gen_put_var(void, _, A) --> !, {A = void}. % void is a special constant.
gen_put_var(R, Seen, A) --> {var(Seen)}, !,
{Seen = yes, R = A},
[put_var(R)].
gen_put_var(R, _, A) --> {R = A}.
gen_put_int(X, R, Seen, A, GTI0, GTI) --> {var(Seen)}, !,
{Seen = yes, R = A},
{add_instr(put_int(X, R), GTI0, GTI)}.
gen_put_int(_, R, _, A, GTI, GTI) --> {R = A}.
gen_put_float(X, R, Seen, A, GTI0, GTI) --> {var(Seen)}, !,
{Seen = yes, R = A},
{add_instr(put_float(X, R), GTI0, GTI)}.
gen_put_float(_, R, _, A, GTI, GTI) --> {R = A}.
gen_put_con(X, R, Seen, A, GTI0, GTI) --> {var(Seen)}, !,
{Seen = yes, R = A},
{add_instr(put_con(X, R), GTI0, GTI)}.
gen_put_con(_, R, _, A, GTI, GTI) --> {R = A}.
gen_put_list([R1,R2], R, Seen, A, GTI0, GTI) --> {var(Seen)}, !,
{Seen = yes, R = A},
{add_instr(put_list(R1, R2, R), GTI0, GTI)}.
gen_put_list(_, R, _, A, GTI, GTI) --> {R = A}.
gen_put_str_args(Regs, R, Seen, A, GTI0, GTI) --> {var(Seen)}, !,
{Seen = yes, R = A},
{add_instr(put_str_args(Regs, R), GTI0, GTI)}.
gen_put_str_args(_, R, _, A, GTI, GTI) --> {R = A}.
gen_put_str([R0,R1], R, Seen, A, GTI0, GTI) --> {var(Seen)}, !,
{Seen = yes, R = A},
{add_instr(put_str(R0, R1, R), GTI0, GTI)}.
gen_put_str(_, R, _, A, GTI, GTI) --> {R = A}.
gen_put_args([], [], LTI, LTI, GTI, GTI) --> !.
gen_put_args([X|Xs], [R|Rs], LTI0, LTI, GTI0, GTI) -->
gen_put(X, R, LTI0, LTI1, GTI0, GTI1),
gen_put_args(Xs, Rs, LTI1, LTI, GTI1, GTI).
gen_put_clo(P:X, A, LTI0, LTI, GTI0, GTI) -->
{X =..[F|Args]},
!,
gen_put_args(Args, Regs, LTI0, LTI1, GTI0, GTI),
{assign_reg(_, R, Seen, LTI1, LTI)},
{Seen = yes, R = A},
{X1 =..[F|Regs]},
{(clause(package_name(P), _) -> CLO = X1 ; CLO = P:X1)},
[put_clo(CLO, R)].
%%%%%%%%%% get instructions
gen_get(X, A, LTI0, LTI, GTI0, GTI) -->
gen_get([A=X], LTI0, LTI, GTI0, GTI).
gen_get([], LTI, LTI, GTI, GTI) --> !.
gen_get([A=X|_], LTI, LTI, GTI, GTI) -->
{var(A)},
!,
{pl2am_error([A,must,not,be,a,variable,in,get(X,A)])},
{fail}.
gen_get([A=X|Instrs], LTI0, LTI, GTI0, GTI) -->
{var(X)},
{assign_reg(X, R, Seen, LTI0, LTI1)},
{nonvar(Seen)},
!,
gen_get_var(R, Seen, A),
gen_get(Instrs, LTI1, LTI, GTI0, GTI).
gen_get([A=X|Instrs], LTI0, LTI, GTI0, GTI) -->
{var(X)},
!,
{add_alloc([X,A,yes], LTI0, LTI1)},
gen_get(Instrs, LTI1, LTI, GTI0, GTI).
gen_get([A=X|Instrs], LTI0, LTI, GTI0, GTI) -->
{integer(X)},
!,
gen_put(X, R, LTI0, LTI1, GTI0, GTI1),
[get_int(X, R, A)],
gen_get(Instrs, LTI1, LTI, GTI1, GTI).
gen_get([A=X|Instrs], LTI0, LTI, GTI0, GTI) -->
{float(X)},
!,
gen_put(X, R, LTI0, LTI1, GTI0, GTI1),
[get_float(X, R, A)],
gen_get(Instrs, LTI1, LTI, GTI1, GTI).
gen_get([A=X|Instrs], LTI0, LTI, GTI0, GTI) -->
{atom(X)},
!,
gen_put(X, R, LTI0, LTI1, GTI0, GTI1),
[get_con(X, R, A)],
gen_get(Instrs, LTI1, LTI, GTI1, GTI).
gen_get([A=X|Instrs], LTI0, LTI, GTI0, GTI) -->
{ground(X)},
!,
gen_put(X, R, LTI0, LTI1, GTI0, GTI1),
[get_ground(X, R, A)],
gen_get(Instrs, LTI1, LTI, GTI1, GTI).
gen_get([A=X|Instrs], LTI0, LTI, GTI0, GTI) -->
{X = [X1|X2]},
!,
[get_list(A)],
gen_unify([X1,X2], Instrs1, LTI0, LTI1, GTI0, GTI1),
gen_get(Instrs1, LTI1, LTI2, GTI1, GTI2),
gen_get(Instrs, LTI2, LTI, GTI2, GTI).
gen_get([A=X|Instrs], LTI0, LTI, GTI0, GTI) -->
{X =.. [F|Args], functor(X, F, N)},
{assign_sreg(F/N:con, R, Seen, GTI0, GTI1)},
gen_put_con(F/N, R, Seen, _, GTI1, GTI2),
[get_str(F/N, R, A)],
gen_unify(Args, Instrs1, LTI0, LTI1, GTI2, GTI3),
gen_get(Instrs1, LTI1, LTI2, GTI3, GTI4),
gen_get(Instrs, LTI2, LTI, GTI4, GTI).
gen_get_var(void, _, _) --> !.
gen_get_var(R, _, A) --> [get_val(R, A)].
%%%%%%%%%% unify instructions
gen_unify([], [], LTI, LTI, GTI, GTI) --> !.
gen_unify([X|Xs], Instrs, LTI0, LTI, GTI0, GTI) -->
{var(X)},
!,
{assign_reg(X, R, Seen, LTI0, LTI1)},
gen_unify_var(R, Seen),
gen_unify(Xs, Instrs, LTI1, LTI, GTI0, GTI).
gen_unify([X|Xs], Instrs, LTI0, LTI, GTI0, GTI) -->
{integer(X)},
!,
gen_put(X, R, LTI0, LTI1, GTI0, GTI1),
[unify_int(X, R)],
gen_unify(Xs, Instrs, LTI1, LTI, GTI1, GTI).
gen_unify([X|Xs], Instrs, LTI0, LTI, GTI0, GTI) -->
{float(X)},
!,
gen_put(X, R, LTI0, LTI1, GTI0, GTI1),
[unify_float(X, R)],
gen_unify(Xs, Instrs, LTI1, LTI, GTI1, GTI).
gen_unify([X|Xs], Instrs, LTI0, LTI, GTI0, GTI) -->
{atom(X)},
!,
gen_put(X, R, LTI0, LTI1, GTI0, GTI1),
[unify_con(X, R)],
gen_unify(Xs, Instrs, LTI1, LTI, GTI1, GTI).
gen_unify([X|Xs], Instrs, LTI0, LTI, GTI0, GTI) -->
{ground(X)},
!,
gen_put(X, R, LTI0, LTI1, GTI0, GTI1),
[unify_ground(X, R)],
gen_unify(Xs, Instrs, LTI1, LTI, GTI1, GTI).
gen_unify([X|Xs], [R=X|Instrs], LTI0, LTI, GTI0, GTI) -->
{assign_reg(_, R, Seen, LTI0, LTI1)},
gen_unify_var(R, Seen),
gen_unify(Xs, Instrs, LTI1, LTI, GTI0, GTI).
%%% unify_void, unify_variable, unify_value
gen_unify_var(void, _) --> !, [unify_void(1)].
gen_unify_var(R, Seen) --> {var(Seen)}, !,
{Seen = yes},
[unify_var(R)].
gen_unify_var(R, _) --> [unify_val(R)].
%%%%%%%%%% generate continuation goal
gen_put_cont(X, R, LTI0, LTI, GTI, GTI) -->
{inc_PN(R, LTI0, LTI)},
[put_cont(X, R)].
%%% A register
assign_reg(X, Reg, Seen, LTI0, LTI) :- nonvar(X), !,
pl2am_error([X,must,be,unbound,variable,in,assign_reg(X,Reg,Seen,LTI0,LTI)]),
fail.
assign_reg(X, Reg, Seen, [XN,YN,PN,Alloc], [XN,YN,PN,Alloc]) :-
allocated(Alloc, X, [Reg,Seen]),
!.
assign_reg(X, Reg, Seen, [XN,YN,PN,Alloc], [XN1,YN,PN,Alloc1]) :-
Reg = a(XN),
XN1 is XN + 1,
Alloc1 = [[X,Reg,Seen]|Alloc].
allocated([[V|X]|_], V0, X) :- V == V0, !.
allocated([_|Alloc], V0, X) :- allocated(Alloc, V0, X).
%%% S register
assign_sreg(X, Reg, Seen, GTI0, GTI) :- \+ ground(X), !,
pl2am_error([X,must,be,ground,term,in,assign_sreg(X,Reg,Seen,GTI0,GTI)]),
fail.
assign_sreg(X, Reg, Seen, [SN,SAlloc,SInstrs], [SN,SAlloc,SInstrs]) :-
allocated(SAlloc, X, [Reg,Seen]),
!.
assign_sreg(X:T, Reg, Seen, [SN,SAlloc,SInstrs], [SN1,SAlloc1,SInstrs]) :-
assign_sreg0(T, SN, Reg),
SN1 is SN+1,
SAlloc1 = [[X:T,Reg,Seen]|SAlloc].
assign_sreg0(int, SN, si(SN)) :- !.
assign_sreg0(flo, SN, sf(SN)) :- !.
assign_sreg0(_, SN, s(SN)) :- !.
%assign_sreg0(con, SN, sc(SN)) :- !.
%assign_sreg0(str, SN, ss(SN)) :- !.
%assign_sreg0(lis, SN, sl(SN)) :- !.
%assign_sreg0(arr, SN, sa(SN)) :- !.
%%% incriment YN
inc_YN(y(YN), [XN,YN|Zs], [XN,YN1|Zs]) :- YN1 is YN+1.
%%% incriment PN
inc_PN(p(PN), [XN,YN,PN|Zs], [XN,YN,PN1|Zs]) :- PN1 is PN+1.
%%% add an instruction to GTI
add_instr(Instr, [SN,SAlloc,SInstrs0], [SN,SAlloc,[Instr|SInstrs0]]).
%%% add an allocation to LTI
add_alloc(E, [XN,YN,PN,Alloc0], [XN,YN,PN,[E|Alloc0]]).
/*****************************************************************
Built-in Predicates and Constants
*****************************************************************/
builtin_meta_predicates((^), 2, [?,:]).
builtin_meta_predicates(call, 1, [:]).
builtin_meta_predicates(once, 1, [:]).
builtin_meta_predicates((\+), 1, [:]).
builtin_meta_predicates(findall, 3, [?,:,?]).
builtin_meta_predicates(bagof, 3, [?,:,?]).
builtin_meta_predicates(setof, 3, [?,:,?]).
builtin_meta_predicates(on_exception, 3, [?,:,:]).
builtin_meta_predicates(catch, 3, [:,?,:]).
builtin_meta_predicates(synchronized, 2, [?,:]).
builtin_meta_predicates(freeze, 2, [?,:]).
builtin_local_predicates(assert, 1, [:]).
builtin_local_predicates(asserta, 1, [:]).
builtin_local_predicates(assertz, 1, [:]).
builtin_local_predicates(retract, 1, [:]).
builtin_local_predicates(retractall, 1, [:]).
builtin_local_predicates(clause, 2, [:,?]).
builtin_local_predicates(abolish, 1, [:]).
% Control constructs
builtin_inline_predicates(fail).
builtin_inline_predicates('$get_level'(_)).
builtin_inline_predicates('$neck_cut').
builtin_inline_predicates('$cut'(_)).
% Term unification
builtin_inline_predicates('$unify'(_,_)).
builtin_inline_predicates('$not_unifiable'(_,_)).
% Type testing
builtin_inline_predicates(var(_)).
builtin_inline_predicates(atom(_)).
builtin_inline_predicates(integer(_)).
builtin_inline_predicates(float(_)).
builtin_inline_predicates(atomic(_)).
builtin_inline_predicates(nonvar(_)).
builtin_inline_predicates(number(_)).
builtin_inline_predicates(java(_)).
builtin_inline_predicates(java(_,_)).
builtin_inline_predicates(closure(_)).
builtin_inline_predicates(ground(_)).
% Term comparison
builtin_inline_predicates('$equality_of_term'(_,_)).
builtin_inline_predicates('$inequality_of_term'(_,_)).
builtin_inline_predicates('$after'(_,_)).
builtin_inline_predicates('$before'(_,_)).
builtin_inline_predicates('$not_after'(_,_)).
builtin_inline_predicates('$not_before'(_,_)).
builtin_inline_predicates('$identical_or_cannot_unify'(_,_)).
% Term creation and decomposition
builtin_inline_predicates(copy_term(_,_)).
% Arithmetic evaluation
builtin_inline_predicates(is(_,_)).
builtin_inline_predicates('$abs'(_,_)).
builtin_inline_predicates('$asin'(_,_)).
builtin_inline_predicates('$acos'(_,_)).
builtin_inline_predicates('$atan'(_,_)).
builtin_inline_predicates('$bitwise_conj'(_,_,_)).
builtin_inline_predicates('$bitwise_disj'(_,_,_)).
builtin_inline_predicates('$bitwise_exclusive_or'(_,_,_)).
builtin_inline_predicates('$bitwise_neg'(_,_)).
builtin_inline_predicates('$ceil'(_,_)).
builtin_inline_predicates('$cos'(_,_)).
builtin_inline_predicates('$degrees'(_,_)).
builtin_inline_predicates('$exp'(_,_)).
builtin_inline_predicates('$float_quotient'(_,_,_)).
builtin_inline_predicates('$floor'(_,_)).
builtin_inline_predicates('$int_quotient'(_,_,_)).
builtin_inline_predicates('$log'(_,_)).
builtin_inline_predicates('$max'(_,_,_)).
builtin_inline_predicates('$min'(_,_,_)).
builtin_inline_predicates('$minus'(_,_,_)).
builtin_inline_predicates('$mod'(_,_,_)).
builtin_inline_predicates('$multi'(_,_,_)).
builtin_inline_predicates('$plus'(_,_,_)).
builtin_inline_predicates('$pow'(_,_,_)).
builtin_inline_predicates('$radians'(_,_)).
builtin_inline_predicates('$rint'(_,_)).
builtin_inline_predicates('$round'(_,_)).
builtin_inline_predicates('$shift_left'(_,_,_)).
builtin_inline_predicates('$shift_right'(_,_,_)).
builtin_inline_predicates('$sin'(_,_)).
builtin_inline_predicates('$sqrt'(_,_)).
builtin_inline_predicates('$tan'(_,_)).
builtin_inline_predicates('$float'(_,_)).
builtin_inline_predicates('$float_integer_part'(_,_)).
builtin_inline_predicates('$float_fractional_part'(_,_)).
builtin_inline_predicates('$truncate'(_,_)).
builtin_inline_predicates('$sign'(_,_)).
% Arithmetic comparison
builtin_inline_predicates('$arith_equal'(_,_)).
builtin_inline_predicates('$arith_not_equal'(_,_)).
builtin_inline_predicates('$greater_or_equal'(_,_)).
builtin_inline_predicates('$greater_than'(_,_)).
builtin_inline_predicates('$less_or_equal'(_,_)).
builtin_inline_predicates('$less_than'(_,_)).
% Prolog Cafe Specific
builtin_inline_predicates('$INSERT_AM'(_)).
builtin_inline_predicates('$INSERT'(_)).
builtin_arith_constant(random).
builtin_arith_constant(pi).
builtin_arith_constant(e).
/*****************************************************************
Eliminate disjunctions
*****************************************************************/
% The clause a :- b;c is converted into a :- b. and a :- c.
% In addition,
% (C1 -> C2) is converted into ((C1,!,C2) ; fail).
% ((C1 -> C2) ; C3) is converted into ((C1,!,C2) ; C3).
% not(C) is converted into ((C,!,fail) ; true).
% \+(C) is converted into ((C,!,fail) ; true).
% And then all of disjunctions are eliminated.
%
% Note: this is based on flatten.pl in holmer's benchmark.
eliminate_disj(Cl, NewCl, DummyCls) :-
extract_disj(Cl, NewCl, Disjs, []),
treat_disj(Disjs, DummyCls, []).
extract_disj(Cl, Cl) --> {var(Cl)}, !.
extract_disj(Cl, (H :- NewB)) --> {Cl = (H :- B)}, !,
extract_disj(B, NewB, Cl).
extract_disj(Cl, Cl) --> !.
extract_disj(G, G, _) --> {var(G)}, !.
extract_disj((G1, G2), (NewG1, NewG2), Cl) --> !,
extract_disj(G1, NewG1, Cl),
extract_disj(G2, NewG2, Cl).
extract_disj(G, NewG, Cl) --> {is_disj(G, DisjG)}, !,
{retract(dummy_clause_counter(N))},
[disj(DisjG, N, NewG, Cl)],
{N1 is N+1},
{assert(dummy_clause_counter(N1))}.
extract_disj(G, G, _) --> !.
is_disj((C1->C2), ((C1,!,C2);fail)) :- !.
is_disj(((C1->C2);C3), ((C1,!,C2);C3)) :- !.
is_disj((C1;C2), (C1;C2)) :- !.
is_disj(not(C),((C,!,fail);true)) :- !.
is_disj(\+(C),((C,!,fail);true)).
treat_disj([]) --> !.
treat_disj([disj((A;B),N,X,C)|Disjs]) -->
{variables((A;B), Vars)},
{variables(C, CVars)},
{intersect_vars(Vars, CVars, Args)},
{clause(file_name(File), _)},
{list_to_string(['$dummy_', N, '_', File], Name)},
{X =.. [Name|Args]},
{copy_term((X :- A), DummyCla)},
{copy_term((X :- B), DummyClb)},
[DummyCla],
[DummyClb],
treat_disj(Disjs).
intersect_vars(V1, V2, Out) :-
sort(V1, Sorted1),
sort(V2, Sorted2),
intersect_sorted_vars(Sorted1, Sorted2, Out).
intersect_sorted_vars([], _, []) :- !.
intersect_sorted_vars(_, [], []).
intersect_sorted_vars([X|Xs], [Y|Ys], [X|Rs]) :- X == Y, !,
intersect_sorted_vars(Xs, Ys, Rs).
intersect_sorted_vars([X|Xs], [Y|Ys], Rs) :- X @< Y, !,
intersect_sorted_vars(Xs,[Y|Ys],Rs).
intersect_sorted_vars([X|Xs], [Y|Ys], Rs) :- X @> Y, !,
intersect_sorted_vars([X|Xs],Ys,Rs).
/*****************************************************************
Utilities
*****************************************************************/
%%% print
pl2am_error(M) :- pl2am_message(['***','PL2ASM','ERROR'|M]).
pl2am_message([]) :- nl, flush_output(user_output).
pl2am_message([M|Ms]) :- write(M), write(' '), pl2am_message(Ms).
%%% format
mode_expr([]).
mode_expr([M|Ms]) :- nonvar(M), pl2am_member(M, [:,+,-,?]), !, mode_expr(Ms).
predspec_expr(F/A) :- atom(F), integer(A).
%%% list
pl2am_append([], Zs, Zs).
pl2am_append([X|Xs], Ys, [X|Zs]) :- pl2am_append(Xs, Ys, Zs).
pl2am_rev(L, R) :- pl2am_rev(L, [], R).
pl2am_rev([], R, R).
pl2am_rev([X|L], Y, R) :- pl2am_rev(L, [X|Y], R).
pl2am_member(X, [X|_]).
pl2am_member(X, [_|Ys]) :- pl2am_member(X, Ys).
pl2am_memq(X, [Y|_]) :- X==Y, !.
pl2am_memq(X, [_|Ys]) :- pl2am_memq(X, Ys).
flatten_list([]) --> !.
flatten_list([L1|L2]) --> !, flatten_list(L1), flatten_list(L2).
flatten_list(L) --> [L].
flatten_code([]) --> !.
flatten_code([(L: C)|Code]) --> !,
[L: []],
flatten_code([C|Code]).
flatten_code([Code1|Code2]) --> !,
flatten_code(Code1),
flatten_code(Code2).
flatten_code(Code) --> [Code].
%%% transform
conj_to_list(X, _) :- var(X), !,
pl2am_error([variable,X,can,not,be,converted,to,'[A|B]',expression]),
fail.
conj_to_list(((X1,X2),Xs), Y) :- !, conj_to_list((X1,(X2,Xs)), Y).
conj_to_list((X,Xs), [X|Zs]) :- !, conj_to_list(Xs, Zs).
conj_to_list((X), [X]).
list_to_string(List, String) :-
list_to_chars(List, Chars0),
flatten_list(Chars0, Chars, []),
atom_codes(String, Chars).
list_to_chars([], []) :- !.
list_to_chars([L|Ls], [C|Cs]) :- atom(L), !,
atom_codes(L, C),
list_to_chars(Ls, Cs).
list_to_chars([L|Ls], [C|Cs]) :- number(L), !,
number_codes(L, C),
list_to_chars(Ls, Cs).
list_to_conj(X, Y) :-
flatten_list(X, L, []),
list_to_conj0(L, Y).
list_to_conj0(X, _) :- var(X), !,
pl2am_error([variable,X,can,not,be,converted,to,'(A,B)',expression]),
fail.
list_to_conj0([X], (X)).
list_to_conj0([X|Xs], (X,Ys)) :- !, list_to_conj0(Xs, Ys).
%%% misc
variables(X, Vs) :- variables(X, [], Vs).
variables(X, Vs, Vs) :- var(X), pl2am_memq(X, Vs), !.
variables(X, Vs, [X|Vs]) :- var(X), !.
variables(X, Vs0, Vs0) :- atomic(X), !.
variables([X|Xs], Vs0, Vs) :- !, variables(X, Vs0, Vs1), variables(Xs, Vs1, Vs).
variables(X, Vs0, Vs) :- X =.. Xs, variables(Xs, Vs0, Vs).
count_variable(V, X, 1) :- V == X, !.
count_variable(_, X, 0) :- var(X), !.
count_variable(_, X, 0) :- atomic(X), !.
count_variable(V, [X|Y], N) :- !,
count_variable(V, X, N1),
count_variable(V, Y, N2),
N is N1 + N2.
count_variable(V, X, N) :-
X =.. Xs,
count_variable(V, Xs, N).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% END
% written by SICStus Prolog 3.12.8